NeurIPS干爆overleaf服务器,科研暂停,已老实!

点击上方“小白学视觉”,选择加"星标"或“置顶”

重磅干货,第一时间送达图片

NeurIPS也没想到3w投稿量先把overleaf干倒了,全世界科研停滞,突如其来的假期给人整不会了,后天就截稿了,能幸运登上的小伙伴赶紧把project下载一波吧!

看到有小伙伴在写iccv的rebuttal的时候也无法访问了,这下不投NeurIPS也成NeurIPS受害者了。

记得几年前AAAI deadline几个小时前overleaf维护,ieee也出现过这种情况,怎么每个节点都出被迫防沉迷啊...

给各位小伙伴吃个定心丸,Overleaf官方发文正在修了。崩太久的话ddl会延期的, CV的会以前有过先例,安心开摆!

温馨小提示

overleaf的替代品:self-hosted overleaf/sharelatex。

也给大家整理了一份提交前的检查清单,希望对小伙伴们有所帮助。

1. 写作规范&压缩空间

  • 不建议通过修改sty 文件去除Anonymous Author,真心觉得有desk reject风险

  • 禁止修改正文

  • 禁止修改页边距

  • 不建议修改图caption字体大小

  • 可以适当使用vspace 或者在巨大表格中适当缩小字体

  • 不建议把related work 放在附录 (审稿人不看)

2. Checklist

  • Checklist 必须,正文和附录一起提交就放在附录后面,正文和附录分开交就放在正文ref 后面。反正一定要在正文ddl前提交

  • Justification: 简单一两句话写写evidence 就行了,例如你的assumption在哪儿讨论了,或者limitation在哪个部分

    下载1:OpenCV-Contrib扩展模块中文版教程
    
    在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。
    
    
    下载2:Python视觉实战项目52讲
    在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。
    
    
    下载3:OpenCV实战项目20讲
    在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。
    
    
    交流群
    
    欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~
数据集介绍:航拍野生动物多物种实例分割数据集 一、基础信息 数据集名称:航拍野生动物多物种实例分割数据集 图片规模: - 训练集:5,895张监测图像 - 验证集:590张监测图像 - 测试集:251张监测图像 覆盖物种: 獾类(Badger)、鸟类(Bird)、野猪(Boar)、猫科动物(Cat)、鸡(Chicken)、牛(Cow)、鹿(Deer)、犬科(Dog)、鸭(Duck)、狐狸(Fox)、鹅(Geese)、鼠类(Mouse)、兔(Rabbit)、羊(Sheep) 标注特性: - YOLO格式实例分割标注,支持复杂生物形态的轮廓识别 - 包含动物行为特征与自然环境交互的多样化场景 - 标注点密度高,平均单目标包含30+坐标点 二、适用场景 生态保护监测系统: 支持开发基于航拍影像的野生动物种群动态监测系统,适用于自然保护区、国家公园等场景的生物多样性保护。 智能农业管理: 适用于畜牧养殖场智能监控系统开发,实现畜禽行为分析、异常状态预警等功能。 生物学研究支持: 为动物行为学、种群生态学研究提供标准化视觉数据,支持跨物种交互研究。 灾害预警系统: 适用于开发入侵物种预警系统,防范野猪等动物对农田、居民区的破坏。 三、核心优势 多维度物种覆盖: 涵盖14类常见陆空野生动物,包含家畜与野生动物交互场景,支持跨物种关系研究。 高精度实例标注: - 精确到毛发级的多边形标注,完整保留动物形态特征 - 包含动态行为标注(觅食、迁徙、群聚等) - 标注经过动物学家校验,符合生物学特征识别要求 场景多样性: - 覆盖昼夜不同时段、多种气候条件下的监测数据 - 包含平原、林地、水域等多类型生态环境 - 具备复杂背景下的目标检测挑战性样本 任务适配性: - 原生支持YOLO系列模型训练 - 兼容目标检测、实例分割、生物量估算等多任务需求 - 提供跨场景模型验证的标准化测试集
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值