【论文阅读】Kernelized Synaptic Weight Matrices

Kernelized Synaptic Weight Matrices

synaptic adj. 联合的,突触的

Abstract

一种新颖的神经网络架构,将权重参数用低维向量通过核方法交互后重参数化。描述了支撑(underpin)该模型的理论,并在推荐系统中应用该神经网络加强结构。

Introduction

神经网络有大量自由参数,训练集的最优性并不能保证在看不到的相似数据上有良好的行为,这就是过拟合。正则化技术被广泛应用到神经网络优化中。

本文中,我们表明,通过把一个神经网络的权重表示为自由参数的地位向量的核交互,我们可以将权重矩阵嵌入到某些特征空间中;嵌入核函数控制。该技术提供了一个结构化的权重矩阵正则化的方法。

Theory

2.1 Definition:kernelNet

把d维的核化神经网络定义为分层函数逼近器,其中输入为 x ⃗ ( 0 ) \vec{x}^{(0)} x (0),输出为 x ⃗ ( N ) \vec{x}^{(N)} x (N)
x j ( l ) = f j ( ∑ i α i ( l ) K ( u ⃗ i ( l ) , v ⃗ i ( l ) ) x i ( l − 1 ) ) x_j^{(l)}=f_j(\sum_i \alpha_i^{(l)}K(\vec{u}_i^{(l)}, \vec{v}_i^{(l)})x_i^{(l-1)}) xj(l)=fj(iαi(l)K(u i(l),v i(l))xi(l1))
其中上标是层索引,fi是非线性函数, α i \alpha_i αi是标量,K是核函数内积,在一些嵌入空间中:
K ( u ⃗ , v ⃗ ) = ⟨ ϕ ( u ⃗ ) , ϕ ( v ⃗ ) ⟩ = ⟨ u ⃗ ∗ , v ⃗ ∗ ⟩ K(\vec{u}, \vec{v}) = \langle\phi(\vec{u}), \phi(\vec{v})\rangle = \langle \vec{u}^*,\vec{v}^*\rangle K(u ,v )=ϕ(u ),ϕ(v )⟩=u ,v

2.2 Relation to Fully-Connected Neural Networks

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.3 Radial Basis Function Kernels

Guassian RBF Kernels

高斯RBF核
在这里插入图片描述
映射到无限空间,相同vector映射为1,当向量距离很远时,趋近为0

FINITE SUPPORT RBF KERNELS

有限支持的RBF核对嵌入网络的有限连接世家不同程度的稀疏性;这可以被用于非核化网络,通过非限制矩阵和有限支持核矩阵的hadamard积
在这里插入图片描述

3.5 Recommender Systems

在这里插入图片描述
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值