自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(42)
  • 收藏
  • 关注

原创 论文阅读2-《Dynamic Multimodal Fusion》

(DynMM),一种新的方法,自适应融合多模态数据和 d在推理过程中生成依赖于数据的前向路径。为此,我们提出了一种门控功能来提供基于多模态特征和一个的模态级或融合级决策提高计算效率的源感知损失函数。

2024-07-09 14:57:26 812

原创 论文阅读1-《VLMO: Unified Vision-Language Pre-Training with Mixture-of-Modality-Experts》

vlmo论文+代码精读

2024-07-08 19:19:23 424

原创 os.system应用

os.system用法

2023-03-22 13:09:47 496 1

原创 Transformer在CV领域的优缺点

Transformer在CV上的应用前景

2022-07-06 10:55:58 8945

原创 python对字典里的元素排序

python字典排序

2022-07-04 10:43:37 650

原创 堆排序(猿辅导提目)

刷题

2022-06-25 08:55:20 197

原创 手动实现卷积函数python

物所看到的景象并非世界的原貌,而是长期进化出来的适合自己生存环境的一种感知方式。画面识别实际上是寻找(学习)人类的视觉关联方式 ,并再次应用。在计算机中,图片存储为0-255的数字,0最暗,255最亮。彩色图片有三个通道,RGB(红、绿、蓝),三原色叠加成为不同颜色的图,计算机中。用三维立方体表示。CNN具有的特性:1)位置不变性:物体无论在一张图片的什么位置都是同一个物体,卷积网络对此具有不变性。为什么不可以用前馈网络实现?前馈网络首先将三维数据拉成一维输入网络,经过一系列隐藏层输出最后的节点,这个

2022-05-30 10:11:56 1728

原创 focal loss的手动实现

from torch import nnimport torchfrom torch.nn import functional as Fclass focal_loss(nn.Module): def __init__(self, alpha=0.25, gamma=2, num_classes=5, size_average=True): super(focal_loss, self).__init__() self.size_average = siz.

2022-05-26 08:34:06 302

原创 c++对unordered_map自定义sort

c++中的sort只可以对vector排序,因此如果对unordered_map自定义排序,需要放在vector中。以lc386为例:class Solution {public: static bool cmp(pair<string, int> &a, pair<string, int> &b){ return a.first < b.first; } vector<int> lexicalOrde

2022-04-18 15:43:28 2100 2

原创 c++递归生成格雷码

首先分析,三位的格雷码是在二位的基础上生成的n位是在n-1的基础上生成的,具体生成规律在于,再n-1位前面补0, 在前面补1再倒序;class GrayCode {public: vector<string> getGray(int n) { // write code here vector<string> now; //递归终止条件及返回 if(n==0) return now; if

2022-04-08 15:29:50 586

原创 c++count和find函数

count统计某个字符出现的次数;使用方法是count(begin,end,‘a’),其中begin指的是起始地址,end指的是结束地址,第三个参数指的是需要查找的字符。在unordered_set里面:count函数只会返回1或者0。 因为无重复元素。用法:此函数接受单个参数element 。表示容器中是否存在需要检查的元素。如果元素存在于容器中,则此函数返回1,否则返回0。unordered_set_name.count(element) find使用find,返回的是被查找元素的位置

2022-04-08 11:23:08 1898

原创 CLIP对比图文预训练 (Contrastive Language-Image Pretraining)论文阅读笔记

任务:video captioning, 视频描述生成,简单来说就是给定一段视频(目前以几秒到几分钟的短视频为主),计算机输出描述这段视频的文字(目前以英文为主)。往往一个视频对应多个人工标注,这也是为训练时增添了一些鲁棒性,如:<image, text#1, text#2…text#n>。网络模型:网络分成两部分:1)文本特征提取:文本编码器可以是 transformer;2) 图像特征提取:可以是resnet50等;训练阶段:训练数据是网络社交媒体上搜集的图像文本对。在训练阶

2022-03-28 14:19:28 6102

原创 权重衰减(L2正则化)的作用

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、pandas是什么?二、使用步骤1.引入库2.读入数据总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考一、pandas是什么?示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。二、使用步骤1.引入库代码

2022-03-28 11:00:47 2349

原创 视频预训练模型总结

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录vilbert (2019年)HeroUni-Perceiver(2021年)Data2vec(2022年)一、pandas是什么?二、使用步骤1.引入库2.读入数据总结vilbert (2019年)论文题目:ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks结构:一个双流多模态模型.

2022-03-24 20:10:29 4556

原创 数据结构中常见的操作效率

图片摘自:https://blog.csdn.net/xhyxxx/article/details/65937427?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522164437813816780261971374%2522%252C%2522scm%2522%253A%252220140713.130102334…%2522%257D&request_id=164437813816780261971374&biz_id=0&.

2022-02-09 11:50:46 600

原创 对c++中的map结构进行排序

map是key有序的结构,自动实现key的顺序和去重;如果相对value排序,要自己定义pair结构。#include <map>#include <string>#include <iostream>using namespace std;// 自己编写的Compare,实现按照字符串长度进行排序struct CmpByKeyLength { bool operator()(const string& k1, const string&am

2022-02-08 21:35:17 860

原创 经典题目:滑动窗口的最大值+前 K 个高频元素

1、滑动窗口的最大值:经典算法:深度优先队列(deque)class myqueue{ public: deque<int> que; void pop(int value){ if(!que.empty() && value == que.front()){ //由于队列只维护单调递减的序列,因此在第一个元素之前可能还有元素不过被弹出了,导致目前元素数目小于窗口大小,因此只有当value == que.fro

2022-02-08 21:16:54 750

原创 二分法查找某数字在数组中出现次数

思路:找到上下边界然后相减;注意:用左边界找,左边界先找到开始,再找到结尾;class Solution {public: int GetNumberOfK(vector<int> data ,int k) { int rbound, lround = 0; int l = 0, r = data.size()-1; while(l<=r){ int mid = (l+

2022-02-08 15:29:45 435

原创 ACM格式处理链表的输入输出

这里写自定义目录标题1、定义链表结构体:struct ListNode{ int val; ListNode* next; ListNode(int x): val(x), next(NULL){}};2、将输入变成数组,将数组构建成链表:ListNode* createList(vector<int>& nums){ if(nums.size() == 0) return NULL; ListNode* head =

2022-02-07 11:59:19 1657

原创 全连接网络和卷积网络的参数计算

文章目录卷积一、普通卷积二、深度可分离卷积二、空间可分离卷积三、空洞卷积全连接卷积CNN网络的参数量和特征图的尺寸无关,仅和卷积核的大小,偏置及BN有关.一、普通卷积卷积参数计算公式:P =卷积核长 × 卷积核宽 × C_in × C_out + C_out (C_in 、 C_out分别表示输入输出的通道数,+C_out是偏置项,r如果加上BN,还要学习两个参数α,β=2*c_out),卷积输出的图像大小:长 = [(In_length - filter_length + 2padding

2021-12-26 20:55:34 3947 1

原创 CNN卷积方式汇总

文章目录一、初始版本二、Inception三、空洞卷积(Dilation卷积)四、深度可分离卷积五、可变形卷积六、特征重标定卷积2.读入数据总结参考:https://zhuanlan.zhihu.com/p/29367273一、初始版本LeNet:最早使用stack单卷积+单池化结构的方式,卷积层来做特征提取,池化来做空间下采样AlexNet:后来发现单卷积提取到的特征不是很丰富,于是开始stack多卷积+单池化的结构VGG:结构没怎么变,网络深度增加。二、InceptionInception

2021-12-26 20:44:53 1692

原创 机器学习----集成学习(boosting,bagging,Adaboos,GBDT,XGBoost)

文章目录前言一、Boosting二、bagging和随机森林总结前言集成学习(ensemble learning): 通过构建并结合多个学习器来完成学习任务,即先产生一组个体学习器,再用某种策略给他们结合起来,个体学习器由一个现有的学习算法从训练数据中产生,同时要具备一定的准确性,不能太坏,要有多样性,学习器之间要有差异。集成后的学习器会显著增加泛化性能。但是多样性和准确性是矛盾的,准确性上去后多样性就要被牺牲,如何产生好而不同的学习器是集成学习的重点。两大分支:Boosting和Bagging,前

2021-12-22 10:19:44 357

原创 c++的ACM格式写输入输出

文章目录一、cin>>二、cin.getline()三、getline()一、cin>>用法1:输入一个数字或字符#include <iostream>using namespace std;int main (){int a,b;cin>>a>>b;cout<<a+b<<endl;return 0;}用法2:接收一个字符串,遇“空格”、“TAB”、“回车”就结束#include <iost

2021-12-15 19:19:49 639

原创 pytorch的Variable和Parameters的联系和区别

文章目录前言一、Variable二、Parameter总结前言首先看一下官方文档:一、Variabletorch.autograd.VariableVariable是对Tensor的封装,操作与tensor基本一致,不同的是,每一个Variable被构建的时候,都包含三个属性:1、data:Variable中所包含的tensor2、grad:tensor的梯度 .grad3、以何种方式得到这种梯度 .grad_fn之所以有Variable这个数据结构,是为了引入计算图(自动求导),方便

2021-12-14 10:24:41 3667 2

原创 深度学习中Dropout层作用

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、dropout是什么?二、dropout过程三、dropout在神经网络中的过程前言Dropout出现的原因训练深度神经网络的时候,总是会遇到两大问题:(1)容易过拟合(2)网络费时在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象。在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高;但是在测试数据上损失函数比较大,

2021-12-13 17:52:58 30348 5

原创 深度学习中的归一化方法BN,LN,IN,GN

文章目录前言一、BN二、LN三、IN四、GN前言归一化层,目前主要有这几个方法,1、Batch Normalization(2015)2、Layer Normalization(2016)3、Instance Normalization(2017)4、Group Normalization(2018)5、Switchable Normalization(2018)区别:将输入的图像shape记为[N, C, H, W],这几个方法主要的区别就是在:Batch Norm是在batch上

2021-12-12 15:10:31 4517

原创 生成视频摘要----DSNet: A Flexible Detect-to-Summarize Network for Video Summarization

论文标题: DSNet: A Flexible Detect-to-Summarize Network for Video Summarization代码链接:https://github.com/li-plus/DSNet前言首先什么是视频摘要?就是将视频中的主要部分抽离出来生成一段新视频,用这段新视频可以概括原视频的内容。由两种方式,第一种是直接提取视频中的关键帧合成新的视频。第二种是利用不同的镜头进行合成,本文是利用第二种方法。摘要本文针对有监督学习方法中没有时序连贯约束导致的,在同一语

2021-12-04 08:59:23 2203

原创 分类和回归问题

前言最近在复习一些深度学习和机器学习的基础知识,看到分类和回归,这里记录一下。一、回归首先,回归应用的场景是用来输出一系列连续的值,然后用于预测等任务。回归的目的是为了找到最优拟合的曲线,这个曲线可以最好的接近数据集中的各个点。回归是对真实值的一种逼近预测,值不确定,当预测值与真实值相近时,误差较小时,认为这是一个好的回归。回归分析用在神经网络上,其最上层是不需要加上softmax函数的,而是直接对前一层累加即可。1.线性回归一般先采用线性回归方法得到最佳拟合直线,当出现欠拟合时,可采用局部加权线

2021-12-03 14:32:47 4666

原创 NMS非极大值抑制

NMS非极大值抑制

2021-12-01 20:40:50 2562

原创 1*1卷积的作用

1*1卷积的作用

2021-12-01 19:59:10 8318

原创 贪心算法总结

什么是贪心算法**局部最优推全局最优。**有时候就是常识推导,例如一堆钱拿固定张数,最后钱拿的最多,肯定先可钱面值大的拿。解题步骤:1)将问题分解为若干个子问题2)找出适合的贪心策略3)求解每一个子问题的最优解4)将局部最优解堆叠成全局最优解分不出这四步的时候就靠常识吧。1.发饼干455:假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s

2021-11-24 10:01:12 670

原创 回溯算法总结

文章目录前言一、pandas是什么?二、使用步骤1.引入库2.读入数据总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考一、pandas是什么?示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。二、使用步骤1.引入库代码如下(示例):import numpy as npimport p

2021-11-21 11:09:01 1459

原创 c++的hashmap及底层实现

文章目录什么是hashmaphash碰撞hash常见结构什么是hashmap哈希表是根据关键码的值而直接进行访问的数据结构,例如数组。一般哈希表都是用来快速判断一个元素是否出现集合里,时间复杂度为O(1)。hash碰撞如果两个元素都映射到了同一索引下表 的位置,这一现象叫做哈希碰撞。解决办法:1.拉成链式结构;2.找下一个空位,前提哈希表还有位置。hash常见结构数组set (集合)map(映射)可以这样记:底层实现为红黑树的一定是有序的且不可更改数值,改了以后整棵树就错乱了,底层实

2021-11-20 16:44:12 2584

原创 Tips:stoi()和to_string()

to_string(): int->stringstoi(): string->int

2021-11-20 09:08:18 208

原创 ubuntu在同一局域网下实现两台服务器文件互传

拷贝本地主机的文件夹到远程主机的命令:scp -r 本地主机文件夹 远程主机用户名@远程主机IP: 希望拷贝到远程主机的文件夹scp -r /home/lsy lsy@10.110.61.2:/home/lsy/document1从远程主机拷贝文件夹至本地主机的命令:scp -r lsy@10.110.61.2:/home/lsy/document1 /home/lsyscp -r 远程主机用户名@远程主机IP:远程主机文件夹 希望拷贝到的本地新的文件夹...

2021-11-19 19:14:41 1481

原创 leecode插件下载与VScode配置

**首先需要VSCode需要基础配置及C++环境。可以参考链接https文章目录1 安装LeetCode插件2 安装Node.js3 登录账号3 刷题开始总结1 安装LeetCode插件选择下载人数最多的这个2 安装Node.js在安装完LeetCode插件之后,会提示你安装Node.js,(网址:https://nodejs.org/en/),我下的是current 的版本,下载好记录下node.exe的文件路径。鼠标右键点击插件----扩展设置----按图修改四个地方建议先创建一个V

2021-11-17 15:29:06 1386

原创 二叉树知识点总结

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录一、二叉树分类及定义二、二叉树的存储方式三、二叉树的遍历1.递归法2.迭代法3.层序遍历总结一、二叉树分类及定义满二叉树定义:如果一棵二叉树只有度为0的结点和度为2的结点,并且度为0的结点在同一层上,则这棵二叉树为满二叉树。完全二叉树定义:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2^h -1 个节点

2021-11-11 14:53:30 515

原创 C++二叉树层序遍历

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录一、pandas是什么?二、使用步骤1.引入库2.读入数据总结提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考一、pandas是什么?示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。二、使用步骤1.引入库代码如下(示

2021-10-28 15:51:21 2865

原创 c++二分法查找

二分法:二分法应用条件:1)数组为有序数组。2)同时题目还强调数组中无重复元素,因为一旦有重复元素,使用二分查找法返回的元素下标可能不是唯一的。区间的定义:区间的定义不同代码就不同。1)定义target在[left, right]区间while (left <= right) 要使用 <= ,因为left == right是有意义的,所以使用 <=。if (nums[middle] > target) right 要赋值为 middle - 1,因为当前这个nums[mid

2021-10-25 08:45:58 1635

原创 目标检测----YOLOV1

前言目标检测任务的目标是识别图像中物体的类别并且定位物体所在位置用矩形框框出。目标检测领域的深度学习方法的发展主要分为两大类:两阶段(Two-stage)目标检测算法和单阶段(One-stage)目标检测算法。1)两步模型:分成两个步骤。第一,提取候选区域提取过程,即先在输入图像上筛选出一些可能存在物体的候选区域,然后针对每个候选区域提取特征,判断其是否存在物体。经典算法模型有R-CNN、SPPNet、Fast R-CNN、Faster R-CNN、R-FCN、Mask R-CNN等。*缺点:耗时..

2021-10-24 18:11:48 3652

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除