CS231N
文章平均质量分 81
CS231N笔记
Cc1924
这个作者很懒,什么都没留下…
展开
-
2.2.线性分类器——softmax
文章目录1.Softmax损失函数和梯度求导1.1.理论推导1.2.编程实现1.2.1.循环模式1.2.2.向量化模式2.Inline questions1.Softmax损失函数和梯度求导1.1.理论推导参考:CS231n课程学习笔记(三)——Softmax分类器的实现 对于某张图片Xi来说,损失函数的定义: 对于求导来说,需要用到链式法则,即 对于某张图片数据Xi,由于Scores = W * x,所以对W求导比较简单,结果就是x.T,注意这里最好严谨一点写成x.T,而不是x原创 2021-08-30 23:32:23 · 1874 阅读 · 0 评论 -
2.1.SVM线性分类器
文章目录1.笔记总结1.1.Small Questions1.1.1.图像xi的定义,行列的问题1.1.2.np.hstack函数1.1.3.np.random.randn()正态分布随机数函数1.2.最优化损失函数1.2.1.寻找更好的W的方法1.2.2梯度下降1.2.2.1.数值梯度1.2.2.2.实际应用中的梯度下降2.SVM的损失函数和解析梯度的计算2.1.SVM损失函数定义2.2.SVM损失函数的梯度推导(重点)2.2.1.在某个数据点上的梯度推导(编程循环实现)2.2.2.在所有数据点上的梯度推原创 2021-08-30 19:21:43 · 1943 阅读 · 1 评论 -
CS231n KNN笔记
1.参考课程笔记翻译KNN上 , KNN下1.1.笔记内容摘录原创 2021-05-11 16:50:44 · 318 阅读 · 0 评论 -
1.1.knn对象实现k_nearest_neighbor.py
from builtins import rangefrom builtins import objectimport numpy as npfrom past.builtins import xrangeclass KNearestNeighbor(object): """ a kNN classifier with L2 distance """ def __init__(self): pass def train(self, X, y):原创 2021-07-19 13:28:20 · 241 阅读 · 0 评论 -
1.knn.ipynb
注意下面的这段代码中,只需在命令行运行这个脚本bash get_datasets.sh,下载数据即即可。其他的应该是和Google云有关# This mounts your Google Drive to the Colab VM.from google.colab import drivedrive.mount('/content/drive', force_remount=True)# Enter the foldername in your Drive where you have sav原创 2021-07-19 13:26:07 · 838 阅读 · 0 评论