神经机器翻译中的模型集成:经验之谈

本文探讨了集成学习在神经机器翻译(NMT)中的实践,包括模型参数平均和预测结果融合两种方法。通过在不同规模数据集上的实验,发现模型参数平均通常在检查点5-20之间选择最佳,而预测结果融合则允许不同结构的模型融合。实验中,对WMT18中英数据进行预处理,筛选出12M平行语料和4M伪数据。结果显示,模型集成能显著提高翻译质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

集成学习是一种联合多个学习器进行协同决策的机器学习方法,通过整合多个学习器的决策结果可以有效减小预测结果的方差与偏置,显著提升模型的泛化能力,达到比单学习器更好的效果。对于神经机器翻译中的集成学习,实验室李北师兄的论文《On Ensemble Learning of Neural Machine Translation》针对NMT中的模型集成进行了大量的实验对比。本人也在不同规模的数据集上进行了尝试,将经验总结如下。

1 NMT中的模型集成方法

在模型层面,有模型参数平均和预测结果融合两种方法,两种方法相对独立,可以先做单个模型的检查点平均,再做不同模型的融合,都会带来提升。在数据层面,也可以通过finetuning和bagging两种策略构造子模型,这里暂不提及。

1.1 模型参数平均

即将单一模型最近保存的N个检查点的参数矩阵进行平均。

在fairseq中,可以通过以下工具实现:

python ~/fairseq/scripts/average_checkpoints.py \
    --inputs ckpts_dir --output ensemble_ckpt_path \
    --num-epoch-checkpoints N --checkpoint-upper-bound U 

有几个问题:

  1. 平均多少个检查点最好?这个需要自己尝试,基本就是5、10、15、20,很容易找到最适
去年,谷歌发布了 Google Neural Machine Translation (GNMT),即谷歌神经机器翻译,一个 sequence-to-sequence (“seq2seq”) 的模型。现在,它已经用于谷歌翻译的产品系统。   虽然消费者感受到的提升并不十分明显,谷歌宣称,GNMT 对翻译质量带来了巨大飞跃。   但谷歌想做的显然不止于此。其在官方博客表示:“由于外部研究人员无法获取训练这些模型的框架,GNMT 的影响力受到了束缚。”   如何把该技术的影响力最大化?答案只有一个——开源。   因而,谷歌于昨晚发布了 tf-seq2seq —— 基于 TensorFlow 的 seq2seq 框架。谷歌表示,它使开发者试验 seq2seq 模型变得更方便,更容易达到一流的效果。另外,tf-seq2seq 的代码库很干净并且模块化,保留了全部的测试覆盖,并把所有功能写入文件。   该框架支持标准 seq2seq 模型的多种配置,比如编码器/解码器的深度、注意力机制(attention mechanism)、RNN 单元类型以及 beam size。这样的多功能性,能帮助研究人员找到最优的超参数,也使它超过了其他框架。详情请参考谷歌论文《Massive Exploration of Neural Machine Translation Architectures》。   上图所示,是一个从中文到英文的 seq2seq 翻译模型。每一个时间步骤,编码器接收一个汉字以及它的上一个状态(黑色箭头),然后生成输出矢量(蓝色箭头)。下一步,解码器一个词一个词地生成英语翻译。在每一个时间步骤,解码器接收上一个字词、上一个状态、所有编码器的加权输出和,以生成下一个英语词汇。雷锋网(公众号:雷锋网)提醒,在谷歌的执行中,他们使用 wordpieces 来处理生僻字词。   据雷锋网了解,除了机器翻译,tf-seq2seq 还能被应用到其他 sequence-to-sequence 任务上;即任何给定输入顺序、需要学习输出顺序的任务。这包括 machine summarization、图像抓取、语音识别、对话建模。谷歌自承,在设计该框架时可以说是十分地仔细,才能维持这个层次的广适性,并提供人性化的教程、预处理数据以及其他的机器翻译功能。   谷歌在博客表示: “我们希望,你会用 tf-seq2seq 来加速(或起步)你的深度学习研究。我们欢迎你对 GitHub 资源库的贡献。有一系列公开的问题需要你的帮助!”   GitHub 地址:https://github.com/google/seq2seq   GitHub 资源库:https://google.github.io/seq2seq/nmt/ 标签:tensorflow  seq2seq  谷歌  机器学习
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值