Cascade RPN : Delving into High- Quality Region Proposal Network with Adaptive

级联RPN-用适应化卷积钻研高质量RPN网络
论文创新点: 常规目标检测方法是预设多个anchor具有几个scale和ratio,1.本文只要在每个位置设置一个anchor。2.适应性卷积被提出去获得特征和anchor在不同stage的对应关系。并且在FasterRCNN,FastRCNN上都比别的RPN网络表现得更好
————————————————————————————————————————————————
RPN和RCNN的输入特征和边界框要保持良好的对应,RCNN中,ROIPooling保证对应,RPN中对应是使anchor box统一初始化,用卷积核遍历特征。

以前大家都是改变细节来改善RPN网络.但是如图a,stage1方差大,离散高,如果RPN回归学习的完美,stage2应该接近狄拉克分布。但是stage1很难学,本来stage2方差小应该好学一点,但是用Iterative RPN也很难学。这些表明之前改进的RPN并没有起到什么作用,如图b。如图c,在第一阶段后,s1更加接近gd了,但是违反了对应的规则。
在这里插入图片描述
在这里插入图片描述
———————————————————————————————————————————————
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
———————————————————————————————————————————————
在这里插入图片描述
公式
a拔表示anchor在feature map上的投影,O可以被解耦为中心偏移和形状偏移。

在这里插入图片描述
其中中心点偏移为:
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
———————————————————————————————————————————————
在这里插入图片描述在这里插入图片描述在这里插入图片描述
流程:一开始因为中心偏移为0,所以用膨胀卷积去产生一系列anchors,之后由于从膨胀卷积中得到了空间顺序进而被“桥接”到下一阶段,先计算偏移量O,网络输出,,在逆变化得出anchor的x,y,w,h.
在这里插入图片描述

在这里插入图片描述在这里插入图片描述
Loss是分类的loss(交叉熵)加上回归的loss(IOU loss),回归的loss因为经过了多个stage,每次乘上一个权重a,在乘上平衡系数λ,
———————————————————————————————————————————————在这里插入图片描述
实验结果:实验分为两部分,region proposals用5000张验证集,检测用20k张测试集,结果如下:

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
结果:本文提出了级联RPN能有效的改善RPN网络中产生的region proposal的质量,进一步提高目标检测的能力。级联RPN解决了特征和anchor对应的限制,并且极大地提高了AR,AP。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值