级联RPN-用适应化卷积钻研高质量RPN网络
论文创新点: 常规目标检测方法是预设多个anchor具有几个scale和ratio,1.本文只要在每个位置设置一个anchor。2.适应性卷积被提出去获得特征和anchor在不同stage的对应关系。并且在FasterRCNN,FastRCNN上都比别的RPN网络表现得更好
————————————————————————————————————————————————
RPN和RCNN的输入特征和边界框要保持良好的对应,RCNN中,ROIPooling保证对应,RPN中对应是使anchor box统一初始化,用卷积核遍历特征。
以前大家都是改变细节来改善RPN网络.但是如图a,stage1方差大,离散高,如果RPN回归学习的完美,stage2应该接近狄拉克分布。但是stage1很难学,本来stage2方差小应该好学一点,但是用Iterative RPN也很难学。这些表明之前改进的RPN并没有起到什么作用,如图b。如图c,在第一阶段后,s1更加接近gd了,但是违反了对应的规则。
———————————————————————————————————————————————
———————————————————————————————————————————————
a拔表示anchor在feature map上的投影,O可以被解耦为中心偏移和形状偏移。
其中中心点偏移为:
———————————————————————————————————————————————
流程:一开始因为中心偏移为0,所以用膨胀卷积去产生一系列anchors,之后由于从膨胀卷积中得到了空间顺序进而被“桥接”到下一阶段,先计算偏移量O,网络输出,,在逆变化得出anchor的x,y,w,h.
Loss是分类的loss(交叉熵)加上回归的loss(IOU loss),回归的loss因为经过了多个stage,每次乘上一个权重a,在乘上平衡系数λ,
———————————————————————————————————————————————
实验结果:实验分为两部分,region proposals用5000张验证集,检测用20k张测试集,结果如下:
结果:本文提出了级联RPN能有效的改善RPN网络中产生的region proposal的质量,进一步提高目标检测的能力。级联RPN解决了特征和anchor对应的限制,并且极大地提高了AR,AP。