BSOJ 3899 -- 【CQOI2014】 数三角形

Description

  给定一个n*m的网格,请计算三个点都在格点上的三角形共有多少个。下图为4*4的网格上的一个三角形。 
          
  注意三角形的三点不能共线。

Input

输入一行,包含两个空格分隔的正整数m和n。

Output

输出一个正整数,为所求三角形的数量。

Sample Input

样例输入1:1 1

样例输入2:2 2

Sample Output

样例输出1:4

样例输出2:76

先求出全集,再去掉三点共线的情况。

那如何枚举三点共线的情况呢?先将横竖两种情况算了,再考虑斜着的。枚举斜着的方法有很多,但比较可行的是先固定两个点,再计算两个点之间的点数。具体实现就是枚举两点的相对位置,也可以理解为向量(a,b),然后就有(n+1-a)*(m+1-b)个位置可以当左上角的点。这两点之间的点数就是gcd(a,b)-1。最后还要*2,对称性嘛。

这么枚举的好处是,两点之间的相对位置去确定了之后,中间点的数量就确定了。

代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<set>
#include<map>
#include<vector>
#include<ctime>
#define ll long long

using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}

ll n,m;
ll ans,tot;
ll gcd(ll a,ll b) {return !b?a:gcd(b,a%b);}
int main() {
	n=Get(),m=Get();
	n++,m++;
	tot=n*m;
	ans=tot*(tot-1)/2*(tot-2)/3;
	if(n>=3) ans-=n*(n-1)/2*(n-2)/3*m;
	if(m>=3) ans-=m*(m-1)/2*(m-2)/3*n;
	for(int i=1;i<n;i++) {
		for(int j=1;j<m;j++) {
			ans-=(n-i)*(m-j)*(gcd(i,j)-1)*2;
		}
	}
	cout<<ans;
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值