数学题,补集转化。
总点数-共线点数,横着竖着直接算好了,斜着需要考虑一下。
考虑枚举两个点之间的横坐标之差和纵坐标之差,如果是(0,0)到(a,b)的矩形,对角线上有gcd(a,b)-1个点。(为什么呢?把斜边看成直角三角形,那么如果存在(0,0)-(c,d)在(0,0)-(a,b)上,那么这两个直角三角形相似,如果一个直角三角形不能再往下分,当且仅当c和d互质,即c=a/gcd(a,b),d=b/gcd(a,b))
然后算一下这样的斜线有多少条就好了。
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
int n,m;
long long ans;
long long C(int x)
{
return (long long)x*(x-1)*(x-2)/6;
}
int gcd(int x,int y)
{
if (y==0) return x;
else return gcd(y,x%y);
}
int main()
{
scanf("%d%d",&n,&m);
n++;m++;
ans=C(n*m)-(long long)n*C(m)-(long long)m*C(n);
for (int i=1;i<n;i++)
for (int j=1;j<m;j++)
{
int num=gcd(i,j)-1;
if (num>=1) ans-=(long long)(n-i)*(m-j)*num*2;
}
printf("%lld\n",ans);
return 0;
}
本文介绍了一种通过补集转化的方法来解决一个特定的数学问题:计算在一个由点构成的网格中,除去共线点后剩余的有效点组合数量。文章详细解释了如何利用最大公约数(GCD)来确定斜线上共线点的数量,并给出了具体的C++实现代码。
452

被折叠的 条评论
为什么被折叠?



