机器学习--数学基础加强1

一、机器学习

1、什么是机器学习

对于某给定的任务T,在合理的性能度量方案P的前提下,某计算机程序可以自主学习任务T经验E;随着提供合适、优质、大量的经验E,该程序对于任务T性能逐步提高。

  • 换个表述
    机器学习是人工智能的一个分支。我们使用计算机设计一个系统,使它能够根据提供的训练数据按照一定的方式来学习;随着训练次数增加,该系统可以在性能上不断学习和改进;通过参数优化的学习模型,能后用于预测相关问题的输出。

2、机器学习可以解决什么

给定数据的预测问题

  • 数据清洗/特征选择
  • 确定算法模型/参数优化
  • 结果预测

3、数据挖掘/机器学习的流程

数据收集->数据清洗->特征工程->数据建模

二、数学分析

1.对数函数简单分析

对数函数底数为多少时,在x=1处斜率为1
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.导数

  • 一阶导数是曲线的斜率,是曲线变化快慢的反应
  • 二阶导数是斜率变化快慢的反应,表征曲线的凹凸性

1)常用函数的导数

在这里插入图片描述

2)应用一:幂指函数

在这里插入图片描述
两边取对数
在这里插入图片描述
在这里插入图片描述

3.Taylor公式—Maclaurin公式(x0=0)

在这里插入图片描述

1)应用1:数值计算

在这里插入图片描述
变换以ln2为进制
在这里插入图片描述

2)应用2:Gini系数的图像、熵、分类误差率之间的关系

在这里插入图片描述
在这里插入图片描述

4.方向导数

在这里插入图片描述

5.梯度

在这里插入图片描述
沿着夹角就是方向导数

6. 伽玛函数

在这里插入图片描述

7.凸函数

在这里插入图片描述

1)一阶可微

在这里插入图片描述

2)二阶可微

在这里插入图片描述
在这里插入图片描述

▽²f(x) > 0,若f是多元函数,是表示二阶导Hessian矩阵正定
正定符号:
在这里插入图片描述

3)凸函数举例

在这里插入图片描述
重点:
在这里插入图片描述
soft-max回归
在这里插入图片描述

8.概率论的简单认识

概率密度函数缩写:PDF在这里插入图片描述

在这里插入图片描述

9.古典概型

在这里插入图片描述
在这里插入图片描述
实例:生日悖论
在这里插入图片描述

11.装箱问题—插板法

在这里插入图片描述
在这里插入图片描述
与组合数的关系
在这里插入图片描述
在这里插入图片描述
熵:是混乱程度的反应
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值