数学加强
一、机器学习
1、什么是机器学习
对于某给定的任务T,在合理的性能度量方案P的前提下,某计算机程序可以自主学习任务T的经验E;随着提供合适、优质、大量的经验E,该程序对于任务T的性能逐步提高。
- 换个表述
机器学习是人工智能的一个分支。我们使用计算机设计一个系统,使它能够根据提供的训练数据按照一定的方式来学习;随着训练次数增加,该系统可以在性能上不断学习和改进;通过参数优化的学习模型,能后用于预测相关问题的输出。
2、机器学习可以解决什么
给定数据的预测问题
- 数据清洗/特征选择
- 确定算法模型/参数优化
- 结果预测
3、数据挖掘/机器学习的流程
数据收集->数据清洗->特征工程->数据建模
二、数学分析
1.对数函数简单分析
对数函数底数为多少时,在x=1处斜率为1
2.导数
- 一阶导数是曲线的斜率,是曲线变化快慢的反应
- 二阶导数是斜率变化快慢的反应,表征曲线的凹凸性
1)常用函数的导数
2)应用一:幂指函数
两边取对数
3.Taylor公式—Maclaurin公式(x0=0)
1)应用1:数值计算
变换以ln2为进制
2)应用2:Gini系数的图像、熵、分类误差率之间的关系
4.方向导数
5.梯度
沿着夹角就是方向导数
6. 伽玛函数
7.凸函数
1)一阶可微
2)二阶可微
▽²f(x) > 0,若f是多元函数,是表示二阶导Hessian矩阵正定
正定符号:
3)凸函数举例
重点:
soft-max回归
8.概率论的简单认识
概率密度函数缩写:PDF
9.古典概型
实例:生日悖论
11.装箱问题—插板法
与组合数的关系
熵:是混乱程度的反应