机器学习基础算法15-回归实例-时间序列分析ARIMA

本文介绍了机器学习中的基础算法——回归,并通过一个具体的实例展示了如何使用ARIMA模型进行时间序列分析,以预测航班乘客数量的变化。在实验中,通过调整参数展示不同效果。
摘要由CSDN通过智能技术生成

模型介绍

https://blog.csdn.net/u012735708/article/details/82460962

实例介绍

给定某航班的乘客变化数据,使用ARIMA计算预测模型

代码

import pandas as pd
import numpy as np
from statsmodels.tsa.arima_model import ARIMA
import matplotlib as mpl
import matplotlib.pyplot as plt
import warnings
import matplotlib.patches as mpatches
from statsmodels.tools.sm_exceptions import HessianInversionWarning


def extend(a, b):
    return 1.05*a-0.05*b, 1.05*b-0.05*a


def date_parser(date):
    # 转换时间索引
    return pd.datetime.strptime(date, '%Y-%m')


if __name__ == '__main__':

    warnings.filterwarnings(action='ignore', category=HessianInversionWarning)
    # 设置显示宽度
    pd.set_option('display.width', 100)
    # 全部打印,参数suppress表示是否用科学计数法来表示浮点数
    np.set_printoptions(linewidth=100, suppress=True)
    # 参数parse_dates为把某一列解析为时间索引;date_par
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值