词向量评价方法

词向量评价方法

paper:Evaluation methods for unsupervised word embeddings

词向量评价可以分为: 绝对内在评估绝对外在评估

Introduction

image-20220702133008017

提出本文主要讨论的是如何去衡量词向量,而不是如何生成词向量,衡量词向量的方式有两种,外部内部评价

外部评价:把词向量作为下游任务的输入

内部评价:衡量词之间的句法和语义

绝对内在评价 absolute intrinsic evaluation

1、Relatedness: 相关性 ,对于dasset’里面词,如果两个词相关,就对应的Cosine similarity 应该高。具体方法由监督模式实现,首先需要一份如下的标记文件,一般可以由人工标注:

学生 上课 0.78
教师 备课 0.8
...

**2、Analogy: ** 类比 推理, 对于一个单词 x 找到 y单词,使得x:y 的关系要和a:b 的关系一样

类似 queen-king+man=women

3、Categorization: 分类,把词聚类成不同的堆,看是否聚类准确

4、Selectional preference: 确定一个词是某个动词的主语还是宾语 判断某名词是更倾向做某个动词的主语还是宾语, 例如一般顺序是 he runs 而不是 runs he

结果

image-20220702135334164

细节:维度是50 ,词典大小是103647 从中也可以看出CBOW的效果比较好,并且对于不同词向量的评估,要依据相应的任务来评估

绝对外在评价 absolute intrinsic evaluation

两个评估任务:

  • Noun phrase chunking:名词分块

  • Sentiment classification:情感分类

image-20220702135631783

从中同样可以看出,没有一种词向量在所有的下游任务中都表现最好,所以对于不同下游任务,我们应该尝试不同词向量的表示。

参考:https://zhuanlan.zhihu.com/p/156828242

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值