题目(GREEN垃圾陷阱WELL):
【题目描述】
卡门——农夫约翰极其珍视的一条Holsteins奶牛——已经落了到“垃圾井”中。“垃圾井”是农夫们扔垃圾的地方,它的深度为D (2 <= D <= 100)英尺。
卡门想把垃圾堆起来,等到堆得与井同样高时,她就能逃出井外了。另外,卡门可以通过吃一些垃圾来维持自己的生命。
每个垃圾都可以用来吃或堆放,并且堆放垃圾不用花费卡门的时间。
假设卡门预先知道了每个垃圾扔下的时间t(0,以及每个垃圾堆放的高度h(1<=h<=25)< span="">和吃进该垃圾能维持生命的时间f(1<=f<=30)< span="">,要求出卡门最早能逃出井外的时间,假设卡门当前体内有足够持续10小时的能量,如果卡门10小时内没有进食,卡门就将饿死。
【输入】
第一行为2个整数,D 和 G (1 <= G <= 100),G为被投入井的垃圾的数量。 第二到第G+1行每行包括3个整数:T (0 < T <= 1000),表示垃圾被投进井中的时间;F (1 <= F <= 30),表示该垃圾能维持卡门生命的时间;和 H (1 <= H <= 25),该垃圾能垫高的高度。
【输出】
如果卡门可以爬出陷阱,输出一个整表示最早什么时候可以爬出;否则输出卡门最长可以存活多长时间
【样例输入】
20 4
5 4 9
9 3 2
12 6 10
13 1 1
【样例输出】
2
1 1
2 3 4
【提示】
[样例说明] 卡门堆放她收到的第一个垃圾:height=9; 卡门吃掉她收到的第二个垃圾,使她的生命从10小时延伸到13小时; 卡门堆放第3个垃圾,height=19; 卡门堆放第4个垃圾,height=20。
分析:
f[j]表示到高度为j的最长存活时间
对于第i个垃圾,如果能在f[j]前降落,则:
不吃: f[j+a[i].h]=max(f[j+a[i].h]
吃:f[j]+=a[i].f
如果无法出去:输出f[0]全部吃掉
代码:
#include<bits/stdc++.h>
using namespace std;
int f[1000],d,g,ans;
struct node{
int t,f,h;
}a[1000];
int cmp(node i,node j){
return i.t<j.t;
}
int main(){
cin>>d>>g;
for(int i=1;i<=g;i++) {
cin>>a[i].t>>a[i].f>>a[i].h;
}
sort(a+1,a+1+g,cmp);
f[0]=10;
for(int i=1;i<=g;i++){
for(int j=d;j>=0;j--){
if(f[j]>=a[i].t){
f[j+a[i].h]=max(f[j+a[i].h],f[j]);
f[j]+=a[i].f;
if(j+a[i].h>=d){
cout<<a[i].t<<endl;
return 0;
}
}
}
}
cout<<f[0];
return 0;
}