单调队列优化dp

一、1D/1D动态规划

  • 有一些动态规划,有着状态数为O(n),每一个状态决策量为O(n)的动态规划方程。
    直接求解的时间复杂度为O(n^2),这便是1D/1D动态规划。绝大多数这样的方程通过合理的组织与优化都是可以优化到O(nlogn)乃至O(n)的时间复杂度。

二、dp优化之单调队列优化

  • 在1D/1D动态规划中,有一种dp,转移方程一般为:

d p [ i ] = m i n ( f [ j ] ) + g [ i ] , ( l [ i ] < = j < = r [ i ] ) , 其 中 l [ i ] 到 r [ i ] 的 序 列 单 调 递 增 ( 不 减 ) dp[i]=min(f[j])+g[i],(l[i]<=j<=r[i]),其中l[i]到r[i]的序列单调递增(不减) dp[i]=min(f[j])+g[i],(l[i]<=j<=r[i]),l[i]r[i]

三、多重背包的单调队列优化

  • 不考虑优化的多重背包状态转移方程: f [ j ] = m a x ( f [ j − k ∗ v [ i ] ] + k ∗ w [ i ] ) f[j]=max(f[j-k*v[i]]+k*w[i]) f[j]=max(f[jkv[i]]+kw[i])
    考虑一个体积 j j j,它的决策空间,只会是与他同余的体积点
    在这个决策空间中,决策范围是单调的,有点类似单调队列,可以进行单调队列优化
    考虑设 j = k ∗ v [ i ] + u j=k*v[i]+u j=kv[i]+u
    f [ p ∗ v [ i ] + u ] = m a x ( f [ k ∗ v [ i ] + u ] + ( p − k ) ∗ w [ i ] ) f[p*v[i]+u]=max(f[k*v[i]+u]+(p-k)*w[i]) f[pv[i]+u]=max(f[kv[i]+u]+(pk)w[i])
    f [ p ∗ v [ i ] + u ] = m a x ( f [ k ∗ v [ i ] + u ] − k ∗ w [ i ] ) + p ∗ w [ i ] f[p*v[i]+u]=max(f[k*v[i]+u]-k*w[i])+p*w[i] f[pv[i]+u]=max(f[kv[i]+u]kw[i])+pw[i]
    这个式子右边前面在枚举 k k k时,外循环 i , u i,u i,u是固定值,所以式子的值只和
    k k k有关,由于 k k k是单调的,所以维护一个 f [ k ∗ v [ i ] + u ] − k ∗ w [ i ] f[k*v[i]+u]-k*w[i] f[kv[i]+u]kw[i]的单调队列即可
单调队列优化DP是一种常用的优化方法,可以将时间复杂度从 $O(n^2)$ 降低到 $O(n)$ 或者 $O(n \log n)$。以下是一道利用单调队列优化DP的典型题目: 题目描述: 给定一个长度为 $n$ 的序列 $a_i$,定义 $f(i)$ 为 $a_i$ 到 $a_n$ 中的最小值,即 $f(i) = \min\limits_{j=i}^n a_j$。现在定义 $g(i)$ 为满足 $f(j) \ge a_i$ 的最小下标 $j$,即 $g(i) = \min\{j \mid j > i, f(j) \ge a_i\}$。如果不存在这样的下标 $j$,则 $g(i) = n+1$。 现在请你计算出 $1 \le i \le n$ 的所有 $g(i)$ 的值。 输入格式: 第一行包含一个整数 $n$。 第二行包含 $n$ 个整数 $a_1,a_2,\cdots,a_n$。 输出格式: 输出 $n$ 行,第 $i$ 行输出 $g(i)$ 的值。 输入样例: 5 3 1 2 4 5 输出样例: 2 5 5 5 6 解题思路: 设 $dp(i)$ 表示 $g(i)$,那么 $dp(i)$ 与 $dp(i+1)$ 的转移关系可以表示为: $$dp(i)=\begin{cases}i+1, &\text{if}\ f(i+1)\ge a_i \\dp(i+1), &\text{else}\end{cases}$$ 这个转移方程可以使用暴力 DP 解决,时间复杂度为 $O(n^2)$。但是,我们可以使用单调队列优化 DP,将时间复杂度降为 $O(n)$。 我们定义一个单调队列 $q$,存储下标。队列 $q$ 中的元素满足: - 队列中的元素是单调递减的,即 $q_1 < q_2 < \cdots < q_k$; - 对于任意的 $i\in [1,k]$,有 $f(q_i) \ge f(q_{i+1})$。 队列 $q$ 的作用是维护一个长度为 $k$ 的区间 $[i+1,q_k]$,满足这个区间中的所有 $j$ 都满足 $f(j) < f(i+1)$。 根据定义,当我们要求 $dp(i)$ 时,只需要查找队列 $q$ 中第一个满足 $f(q_j) \ge a_i$ 的位置 $q_j$,那么 $g(i) = q_j$,如果队列 $q$ 中不存在这样的位置,则 $g(i) = n+1$。 那么如何维护单调队列 $q$ 呢?我们可以在每次 DP 的过程中,将 $i$ 加入队尾。然后判断队首元素 $q_1$ 是否满足 $f(q_1) \ge a_i$,如果满足则弹出队首元素,直到队首元素不满足条件为止。 由于每个元素最多被加入队列一次,并且最多被弹出一次,因此时间复杂度为 $O(n)$。具体实现细节可以参考下面的代码实现:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值