动态规划:
Dynamic Programming(此处“Programming”为“规划”,而非指“程序”、“编程”),研究多步决策过程最优化问题的一种数学方法,英文缩写DP。在动态规划中,为了寻找一个问题的最优解(即最优决策过程),将整个问题划分成若干个相应的阶段,并在每个阶段都根据先前所作出的决策作出当前阶段最优决策,进而得出整个问题的最优解。
能采用动态规划求解的问题的一般要具有3个性质:
1.最优化原理:如果问题的最优解所包含的子问题的解也是最优的,就称该问题具有最优子结构,即满足最优化原理。
2.无后效性:即某阶段状态一旦确定,就不受这个状态以后决策的影响。也就是说,某状态以后的过程不会影响以前的状态,只与当前状态有关。
3.有重叠子问题:即子问题之间是不独立的,一个子问题在下一阶段决策中可能被多次使用到。(该性质并不是动态规划适用的必要条件,但是如果没有这条性质,动态规划算法同其他算法相比就不具备优势)
解题步骤:
1.拆分问题
2.定义状态(并找出初状态)
3.状态转移方程
例1:
有一个由非负整数组成的三角形,第一行只有一个数,除了最下行之外每个数的左下方和右下方各有一个数,如图所示; 从第一行的数开始,每次可以往左下或右下走一格,直到走到最下行,把沿途经过的数全部加起来,如何走才能使得这个和尽量大。