时间序列
文章平均质量分 83
学习过程中的整理与总结,如有不足之处还请大佬们多多指正。
赵同学Zoey
The best is yet to come.
展开
-
【读论文】A Deep Neural Network for Unsupervised Anomaly Detection and Diagnosis in Multivariate Time...
文章提出的方法:多尺度卷积递归编码器-解码器(Multi-Scale Convolutional Recurrent Encoder-Decoder, MSCRED)该方法的主要思路:(1) MSCRED首先构造多尺度(分辨率)特征矩阵来描述跨不同时间步的多级系统状态,系统状态的不同级别表示不同异常事件的严重程度。(2) 给定签名矩阵,使用卷积编码器对传感器之间的相关模式进行编码,并使用基于注意力的卷积长短时记忆(ConvLSTM)网络对时间信息进行建模;(3) 使用卷积解码器重构特征矩阵,原创 2022-08-23 10:49:49 · 2016 阅读 · 1 评论 -
ConvLSTM原理解读
LSTM非常擅长处理时序信息也能处理空间信息。但对于三维图形来讲,因为有着丰富的空间信息并且每一个点和周围是有很强的相关性的,这就带来了冗余,传统的LSTM是很难刻画这种空间特征的。为了克服LSTM在处理三维信息中的不足,ConvLSTM 将 LSTM 中的2D的输入转换成了3D的tensor,最后两个维度是空间维度(行和列)。对于每一时刻t的数据,ConvLSTM 将 LSTM 中的一部分连接操作替换为了卷积操作,即通过当前输入和局部邻居的过去状态来进行预测。......原创 2022-08-18 15:12:47 · 18365 阅读 · 0 评论 -
【读论文】Graph Neural Network-Based Anomaly Detection in Multivariate Time Series
为了充分利用多元时间序列中传感器之间的复杂关系,利用图神经网络(GNNs)来学习传感器之间的关系图。现有的方法没有明确地学习变量之间现有关系的结构,或使用它们来预测时间序列的预期行为。基于图的方法通过用边表示相互依赖关系,为传感器之间的关系建模提供了一种方法。:为多元时间序列数据开发特定的方法,明确地捕获传感器之间的关系图。...原创 2022-08-16 13:47:36 · 3326 阅读 · 8 评论