2021/8/2-第四天作业

1. 写出下面无向图的邻接矩阵。

在这里插入图片描述
答:邻接矩阵 E = [ 0 1 1 1 1 0 1 0 1 1 0 1 1 0 1 0 ] \mathbf{E} = \left[\begin{matrix} 0 & 1 & 1 & 1 \\ 1 & 0 &1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{matrix}\right] E=0111101011011010.
 

2. 定义无向网络。

答:An undirected net is a tuple G = ( V , w ) G = (\mathbf{V}, w) G=(V,w), where V \mathbf{V} V is a set of nodes, and w : V × V → R w: \mathbf{V \times V} \to \mathbb{R} w:V×VR is the weight function where w ( v i , v j ) w(v_i, v_j) w(vi,vj) is the weight of the edge ( v i , v j ) (v_i, v_j) (vi,vj) satisfying ∀ v i , v j ∈ V \forall v_i, v_j \in \mathbf{V} vi,vjV, w ( v i , v j ) = w ( v j , v i ) w(v_i, v_j) = w(v_j, v_i) w(vi,vj)=w(vj,vi).
 

3. 自己画一棵树, 将其元组各部分写出来 (特别是函数 p p p ).

在这里插入图片描述
答:对于上树,结点集合 V = { v 1 , v 2 , v 3 , v 4 , v 5 } \mathbf{V} = \{\rm v1, v2, v3, v4, v5\} V={v1,v2,v3,v4,v5},根结点 r = v 1 r = \rm v1 r=v1
函数 p : { v 1 , v 2 , v 3 , v 4 , v 5 } → { ϕ , v 1 , v 2 , v 3 , v 4 , v 5 } p: \{\rm v1, v2, v3, v4, v5\} \to \{\phi, \rm v1, v2, v3, v4, v5\} p:{v1,v2,v3,v4,v5}{ϕ,v1,v2,v3,v4,v5},
p ( v 1 ) = ϕ p(\rm v1) = \phi p(v1)=ϕ, p ( v 2 ) = p ( v 3 ) = v 1 p(\mathrm{v2}) = p(\mathrm{v3}) = \rm v1 p(v2)=p(v3)=v1, p ( v 4 ) = p ( v 5 ) = v 3 p(\mathrm{v4}) = p(\mathrm{v5}) = \rm v3 p(v4)=p(v5)=v3.
 

4. 针对上树, 将代码中的变量值写出来 (特别是 parent 数组).

答:将上树节点 v 1 \rm v1 v1 v 5 \rm v5 v5 分别映射为 0 0 0 4 4 4,则节点数 n = 5 n = 5 n=5,根节点 r o o t = 0 root = 0 root=0,父节点数组 p a r e n t = [ − 1 , 0 , 0 , 2 , 2 ] \mathbf{parent} = [-1, 0, 0, 2, 2] parent=[1,0,0,2,2].
 

5. 画一棵三叉树, 并写出它的 child 数组.

在这里插入图片描述
答: c h i l d = [ 4 3 2 − 1 − 1 − 1 6 − 1 5 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 ] \mathbf{child} = \left[\begin{matrix} 4 & 3 & 2 \\ -1 & -1 & -1 \\ 6 & -1 & 5 \\ -1 & -1 & -1 \\ -1 & -1 & -1 \\ -1 & -1 & -1 \end{matrix}\right] child=416111311111215111.
 

6. 按照本贴风格, 重新定义树. 提示: 还是应该定义 parent 函数, 字母表里面只有一个元素.

答:Let ϕ \phi ϕ be the empty node, a tree is a quadruple T = ( V , r , Σ , p ) T=(\mathbf{V}, r, \Sigma, p) T=(V,r,Σ,p) where

  • V \mathbf{V} V is the set of nodes;
  • r ∈ V r \in \mathbf{V} rV is the root node;
  • Σ \Sigma Σ is a alphabet, Σ = { u } \Sigma = \{\mathrm{u}\} Σ={u};
  • p : V × Σ ∗ → V ∪ { ϕ } p: \mathbf{V} \times \Sigma^* \to \mathbf{V} \cup \{\phi\} p:V×ΣV{ϕ} satisfying
    • ∀ v ∈ V \forall v \in \mathbf{V} vV, ∃ ! s ∈ Σ ∗ \exist ! s \in \Sigma^* !sΣ, s.t. p ( v , s ) = r p(v, s) = r p(v,s)=r.
       
7. 根据图、树、 m m m-叉树的学习, 谈谈你对元组的理解.

答:通过对图、树、 m m m-叉树的学习,可以看出元组非常的强大,尤其是在定义上,它能够将不同的类型,比如,集合、变量和函数等,放在同等位置上进行定义,可以抽象问题,表示复杂的结构等,具有较强的概括性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值