2021/07/28-第三天作业

1. 将向量下标为偶数的分量 ( x 2 , x 4 , … ) (x_2, x_4, …) (x2,x4,) 累加, 写出相应表达式.

答:表达式可以写为 ∑ i m o d    2 = 0 x i \sum_{i \mod 2=0} x_i imod2=0xi,或 ∑ i = 1 ⌊ n / 2 ⌋ x 2 i \sum_{i=1}^{\lfloor n/2 \rfloor} x_{2i} i=1n/2x2i.
 

2. 各出一道累加、累乘、积分表达式的习题, 并给出标准答案.

答:给定一个向量 X = ( x 1 , x 2 , … , x n ) \mathbf{X} = (x_1, x_2, \dots, x_n) X=(x1,x2,,xn),求下标属于3到97的分量的和与乘积。
累加: ∑ i = 3 97 x i \sum_{i=3}^{97} x_i i=397xi,累乘: ∏ i = 3 97 x i \prod_{i=3}^{97} x_i i=397xi.
给定一个函数 f ( x ) = x 2 f(x) = x^2 f(x)=x2,给出其在 [ 1 , 7 ] [1, 7] [1,7] 上的积分表达式。
积分表达式: ∫ 1 7 x 2 d x \int_1^7 x^2 \mathrm{d}x 17x2dx.

3. 你使用过三重累加吗? 描述一下其应用.

答:三重累加可以使用在,计算多个矩阵内部元素之和。
 

4. 给一个常用的定积分, 将手算结果与程序结果对比.

答:一个常用定积分, ∫ 0 1 r 1 − r 2 d r = 1 3 \int_0^1 r\sqrt{1-r^2} \mathrm{d}r = \frac{1}{3} 01r1r2 dr=31.
使用计算机计算上述定积分,代码如下,

double sum=0;
double deleta=0.01;
for(double i=0;i<1;i+=deleta)
	sum+=deleta*(i*sqrt(1-i*i));

计算结果为0.33303145522214295,与实际结果很接近。
 

5. 自己写一个小例子来验证最小二乘法.

答:给定数据,

时间(天)数量(个)
13
24

X = [ 1 1 1 2 ] \mathbf{X} = \left[\begin{matrix} 1 & 1 \\ 1 & 2 \end{matrix}\right] X=[1112] Y = [ 3 , 4 ] T \mathbf{Y} = [3, 4]^\mathrm{T} Y=[3,4]T w = [ w 0 , w 1 ] \mathbf{w} = [w_0,w_1] w=[w0,w1],求 arg min ⁡ w ∣ ∣ X w − Y ∣ ∣ 2 2 \argmin_{\mathbf{w}} ||\mathbf{X} \mathbf{w} - \mathbf{Y}||_2^2 wargminXwY22
根据 w = ( X T X ) − 1 X T Y \mathbf{w} = (\mathbf{X}^\mathrm{T}\mathbf{X})^ {−1}\mathbf{X}^\mathrm{T}\mathbf{Y} w=(XTX)1XTY, 可求得 x = [ 2 , 1 ] \mathbf{x} = [2, 1] x=[2,1],其函数为 f ( x ) = x + 2 f(x) = x + 2 f(x)=x+2,满足原数据。
 

6. 写出 w = ( X T X ) X T Y \mathbf{w} = (\mathbf{X}^\mathrm{T}\mathbf{X})\mathbf{X}^\mathrm{T}\mathbf{Y} w=(XTX)XTY 的推导过程.

∥ X w − Y ∥ 2 2 = ( X w − Y ) T ( X w − Y ) = ( w T X T − Y T ) ( X w − Y ) = w T X T X w − w T X T Y − Y T X w + Y T Y \begin{aligned} \|\mathbf{X}\mathbf{w} - \mathbf{Y}\|_2^2 & = (\mathbf{X}\mathbf{w} - \mathbf{Y})^{\mathrm{T}}(\mathbf{X}\mathbf{w} - \mathbf{Y}) \\ & = (\mathbf{w^{\mathrm{T}}}\mathbf{X}^{\mathrm{T}} - \mathbf{Y}^{\mathrm{T}})(\mathbf{Xw} - \mathbf{Y}) \\ & = \mathbf{w^{\mathrm{T}}X^{\mathrm{T}}Xw - w^{\mathrm{T}}X^{\mathrm{T}}Y - Y^{\mathrm{T}}Xw + Y^{\mathrm{T}}Y} \end{aligned} XwY22=(XwY)T(XwY)=(wTXTYT)(XwY)=wTXTXwwTXTYYTXw+YTY.
对上式进行求导,求导法则如下,
在这里插入图片描述
求导结果为 X T X w + X T X w − X T Y − X T Y + 0 = 2 X T X w − 2 X T Y \mathbf{X^{\mathrm{T}}Xw} + \mathbf{X^{\mathrm{T}}Xw} - \mathbf{X^{\mathrm{T}}Y} - \mathbf{X^{\mathrm{T}}Y} + 0 = 2\mathbf{X^{\mathrm{T}}Xw} - 2\mathbf{X^{\mathrm{T}}Y} XTXw+XTXwXTYXTY+0=2XTXw2XTY,令其等于 0 0 0 X T X w − X T Y \mathbf{X^{\mathrm{T}}Xw} - \mathbf{X^{\mathrm{T}}Y} XTXwXTY,转换一下为 w = ( X T X ) X T Y \mathbf{w} = (\mathbf{X}^\mathrm{T}\mathbf{X})\mathbf{X}^\mathrm{T}\mathbf{Y} w=(XTX)XTY
 

7. 自己推导一遍, 并描述这个方法的特点 (不少于 5 条).

答:特点 1)将 x \mathbf{x} x 做为参数放入 sigmoid 函数中,使用 sigmoid 函数将距离转成概率, P ( y = 1 ∣ x ; w ) = 1 1 + e − x w P(y = 1 \vert \mathbf{x}; \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{xw}}} P(y=1x;w)=1+exw1.
2)使用一个式子 P ( y i = 1 ∣ x i ; w ) = P ( y i = 1 ∣ x i ; w ) y i ( 1 − P ( y i = 1 ∣ x i ; w ) ) 1 − y i P(y_i = 1 \vert \mathbf{x}_i; \mathbf{w}) = P(y_i = 1 \vert \mathbf{x}_i; \mathbf{w})^{y_i}(1 -P(y_i = 1 \vert \mathbf{x}_i; \mathbf{w}))^{1-y_i} P(yi=1xi;w)=P(yi=1xi;w)yi(1P(yi=1xi;w))1yi 表示 0 0 0 1 1 1 两种情况的概率。
3)采用概率相乘的方式,对全部对象进行优化, arg max ⁡ w L ( w ) = ∏ i = 1 n P ( y i ∣ x i ; w ) \argmax_\mathbf{w}L(\mathbf{w}) = \prod_{i=1}^n P(y_i \vert \mathbf{x}_i; \mathbf{w}) wargmaxL(w)=i=1nP(yixi;w).
4)使用 log ⁡ \log log 将相乘转化为相加问题, log ⁡ L ( w ) = ∑ i = 1 n log ⁡ P ( y i ∣ x i ; w ) \log L(\mathbf{w}) = \sum_{i = 1}^n \log P(y_i \vert \mathbf{x}_i; \mathbf{w}) logL(w)=i=1nlogP(yixi;w).
5)使用梯度下降求解 w \mathbf{w} w w t + 1 = w t − α ∂ log ⁡ L ( w ) ∂ w \mathbf{w}^{t+1} = \mathbf{w}^t - \alpha\frac{\partial\log L(\mathbf{w})}{\partial\mathbf{w}} wt+1=wtαwlogL(w).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值