一、实现源码
from tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# 1. 下载并训练数据集
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
print ( ' 输入数据:', mnist.train.images)
print ( ' 输入数据打shape :', mnist.train.images.shape)
# 2. 开始识别数据集
import pylab
im = mnist.train.images[1]
im = im.reshape(-1 ,28)
pylab.imshow(im)
pylab.show()
# 3. 保存数据在csv文件中
import pandas as pd
print("im = ",im) # 打印显示一下文档内容
data1 = pd.DataFrame(im)
data1.to_csv("G:\\data1.csv")
二、实现效果
1. Spyder实现结果
2. 测试的Excle数据
三、新知识点
1. tensorflow文件路径
2. reshape()函数
- reshape()是数组对象中的方法,用于改变数组的形状;
- Python Numpy中reshape函数参数-1的含义:
一个参数为-1时,那么reshape函数会根据另一个参数的维度计算出数组的另外一个shape属性值; - shape(x,y):x行y列的数组;
reshape(x,-1):改变成x行n列的数组;
reshape(-1,y):改变成n行y列的数组; - 代码举例:
>>> z = np.array([[1, 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12],[13, 14, 15, 16]])
>>> print(z)
[[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]
[13 14 15 16]]
>>> print(z.shape)
(4, 4)
>>> print(z.reshape(-1))
[ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16]
>>> print(z.reshape(-1,1)) #我们不知道z的shape属性是多少,
#但是想让z变成只有一列,行数不知道多少,
#通过`z.reshape(-1,1)`,Numpy自动计算出有16行,
#新的数组shape属性为(16, 1),与原来的(4, 4)配套。
[[ 1]
[ 2]
[ 3]
[ 4]
[ 5]
[ 6]
[ 7]
[ 8]
[ 9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]]
>>> print(z.reshape(2,-1))
[[ 1 2 3 4 5 6 7 8]
[ 9 10 11 12 13 14 15 16]]
1. Python numpy函数:reshape()
2. Python Numpy中reshape函数参数-1的含义
3. Numpy 数组运算数学库
- 参考资料
四、参考资料
- 参考资料
五、新的思路
- 通过简短接触,发现初始数据集mnist用的是numpy存储的,因此想到将股票数据存在numpy构建的数组中,开始训练;
- 通过reshape(x,y),将数据转成N*N的一个矩阵;
- 目前已经下载了mnist,能够通过已经有的数据库,学习出新的东西,如果要建立自己的数据库,该怎么才做呢?
- 如何实现不同的上升数据库长的数据,对应一个类别?
- 进行tfrecord格式转换,针对xlsx,csv格式有便捷的方法。
- 如何生成tfrecord数据集呢?
六、工作思路
1.将自己的数据集转换为 tensorflow 支持的神经网络输入格式 tfrecord
2. 重建 LeNet-5 卷积神经网络
3. 对神经网络进行训练
七、建数据库
1.
2.
八、保存模型、重新加载
import time
t = time.time()
export_path = "/tmp/saved_models/{}".format(int(t))
model.save(export_path, save_format='tf')
export_path
九、出现问题
- 数据格式不匹配问题:原因:Numpy针对的是对数组进行处理