第5章课后习题算法设计题(严蔚敏数据结构c语言版第2版)

以二叉链表作为二叉树的存储结构,编写以下算法:
(1)统计二叉树的叶节点个数。
(2)判别两棵树是否相等。
(3)交换二叉树每个结点的左孩子和右孩子。
(6)用按层次顺序遍历二叉树的方法,统计树中度为1的结点数目。
5-1 统计二叉树的叶节点个数

#include <iostream>
typedef struct BiTNode{
    char data;
    struct BiTNode *lchild,*rchild;
}BiTNode,*BiTree;
void CreatBiTree(BiTree &T);
void PreOrderTraverse(BiTree T);
void InOrderTraverse(BiTree T);
void PostOrderTraverse(BiTree T);
int LeafCount(BiTree T);
using namespace std;
int main(){
    BiTree T;
    cout<<"先序遍历顺序建立二叉树为:"<<endl;
    CreatBiTree(T);
    cout<<"先序遍历输出为:"<<endl;
    PreOrderTraverse(T);
    cout<<endl;
    cout<<"中序遍历输出为:"<<endl;
    InOrderTraverse(T);
    cout<<endl;
    cout<<"后序遍历输出为:"<<endl;
    PostOrderTraverse(T);
    cout<<endl;
    cout<<"该二叉树叶子结点个数为:"<<LeafCount(T)<<endl;
    return 0;
}
//先序建立二叉树
void CreatBiTree(BiTree &T){
    char ch;
    cin>>ch;
    if(ch=='#'){
        T=NULL;
    }else if(ch!='#'){
        T=new BiTNode;
        T->data=ch;
        CreatBiTree(T->lchild);
        CreatBiTree(T->rchild);
    }
}
//前序遍历:若结点不为空就输出,遍历左子树,然后遍历右子树;
//         若为空就不输出
void PreOrderTraverse(BiTree T){
    if(T){
        cout<<T->data<<" ";
        PreOrderTraverse(T->lchild);
        PreOrderTraverse(T->rchild);
    }
}
//中序遍历:若结点不为空就遍历左子树,输出根结点数据,再遍历右子树;
//         若为空就不输出
void InOrderTraverse(BiTree T){
    if(T){
        InOrderTraverse(T->lchild);
        cout<<T->data<<" ";
        InOrderTraverse(T->rchild);
    }
}
//后序遍历:若结点不为空就遍历左子树,然后遍历右子树,输出根结点数据;
//         若为空就不输出
void PostOrderTraverse(BiTree T){
    if(T){
        PostOrderTraverse(T->lchild);
        PostOrderTraverse(T->rchild);
        cout<<T->data<<" ";
    }
}
//叶子结点个数
int LeafCount(BiTree T){
    if(T==NULL){
        return 0;
    }else if(T->lchild==NULL && T->rchild==NULL){
        return 1;
    }else{
        return LeafCount(T->lchild)+LeafCount(T->rchild);
    }
}

5-2 判别两棵树是否相等

#include <iostream>
typedef struct BiTNode{
    char data;
    struct BiTNode *lchild,*rchild;
}BiTNode,*BiTree;
void InitBiTree(BiTree &T);
void CreatBiTree(BiTree &T);
void PreOrderTraverse(BiTree T);
bool IsEqual(BiTree T1,BiTree T2);
using namespace std;
int main(){
    BiTree T1,T2;
    cout<<"先序遍历顺序建立二叉树T1为:"<<endl;
    CreatBiTree(T1);
    cout<<"T1先序遍历输出为:"<<endl;
    PreOrderTraverse(T1);
    cout<<endl;

    cout<<"先序遍历顺序建立二叉树T2为:"<<endl;
    CreatBiTree(T2);
    cout<<"T2先序遍历输出为:"<<endl;
    PreOrderTraverse(T2);
    cout<<endl;
    if(IsEqual(T1,T2)){
        cout<<"T1和T2相等"<<endl;
    }else if(!IsEqual(T1,T2)){
        cout<<"T1和T2不相等"<<endl;
    }
}
void InitBiTree(BiTree &T){
}
//先序建立二叉树
void CreatBiTree(BiTree &T){
    char ch;
    cin>>ch;
    if(ch=='#'){
        T=NULL;
    }else if(ch!='#' && ch!='!'){
        T=new BiTNode;
        T->data=ch;
        CreatBiTree(T->lchild);
        CreatBiTree(T->rchild);
    }
}
//先序遍历:若结点不为空就输出,遍历左子树,然后遍历右子树;
//         若为空就不输出
void PreOrderTraverse(BiTree T){
    if(T){
        cout<<T->data<<" ";
        PreOrderTraverse(T->lchild);
        PreOrderTraverse(T->rchild);
    }
}
//两棵树是否相等
bool IsEqual(BiTree T1,BiTree T2){
    if((T1==NULL) && (T1==NULL)){//根结点都为空相等
        return true;
    }else if((T1==NULL)!=(T1==NULL)){//根结点一个为空,
                                    //一个不为空不相等
        return false;
    }else if(T1->data!=T2->data){//根结点数据不等就不相等
        return false;
    }
    //结点不空有数据
    return (IsEqual(T1->lchild,T2->lchild)
            && IsEqual(T1->rchild,T2->rchild));
}

5-3 交换二叉树每个结点的左孩子和右孩子

#include <iostream>
typedef struct BiTNode{
    char data;
    struct BiTNode *lchild,*rchild;
}BiTNode,*BiTree;
void InitBiTree(BiTree &T);
void CreatBiTree(BiTree &T);
void PreOrderTraverse(BiTree T);
void Exchange(BiTree &T);
using namespace std;
int main(){
    BiTree T;
    cout<<"先序遍历顺序建立二叉树为:"<<endl;
    CreatBiTree(T);
    cout<<"先序遍历输出为:"<<endl;
    PreOrderTraverse(T);
    cout<<endl;
    Exchange(T);
    cout<<"交换后先序遍历顺序输出为:"<<endl;
    PreOrderTraverse(T);
}
void InitBiTree(BiTree &T){
}
//先序建立二叉树
void CreatBiTree(BiTree &T){
    char ch;
    cin>>ch;
    if(ch=='#'){
        T=NULL;
    }else if(ch!='#' && ch!='!'){
        T=new BiTNode;
        T->data=ch;
        CreatBiTree(T->lchild);
        CreatBiTree(T->rchild);
    }
}
//先序遍历:若结点不为空就输出,遍历左子树,然后遍历右子树;
//         若为空就不输出
void PreOrderTraverse(BiTree T){
    if(T){
        cout<<T->data<<" ";
        PreOrderTraverse(T->lchild);
        PreOrderTraverse(T->rchild);
    }
}
//交换每个结点的左右子树:叶子结点不用交换,不是叶子结点就交换,交换左子树和右子树
void Exchange(BiTree &T){
    if(T){
        if(T->lchild==NULL && T->rchild==NULL){
            return;
        }else{
            BiTree temp;
            temp=T->lchild;
            T->lchild=T->rchild;
            T->rchild=temp;
        }
        Exchange(T->lchild);
        Exchange(T->rchild);
    }
}

5-6 用按层次顺序遍历二叉树的方法,统计树中度为1的结点数目

#include <iostream>
#define m 100
typedef struct BiTNode{
    char data;
    struct BiTNode *lchild,*rchild;
}BiTNode,*BiTree;
typedef struct{
    BiTree base;
    int front;
    int rear;
}SqQueue;
void InitBiTree(BiTree &T);
void CreatBiTree(BiTree &T);
void PreOrderTraverse(BiTree T);
int OneCount(BiTree T);
void InitQueue(SqQueue &s);
void EnQueue(SqQueue &s,BiTree T);
BiTree DeQueue(SqQueue &s);
bool IsEmpty(SqQueue s);
using namespace std;
int main(){
    BiTree T;
    cout<<"先序遍历顺序建立二叉树为:"<<endl;
    CreatBiTree(T);
    cout<<"先序遍历输出为:"<<endl;
    PreOrderTraverse(T);
    cout<<endl;
    cout<<"该二叉树度为1的结点个数为:"<<OneCount(T)<<endl;
}
void InitBiTree(BiTree &T){
}
//先序建立二叉树
void CreatBiTree(BiTree &T){
    char ch;
    cin>>ch;
    if(ch=='#'){
        T=NULL;
    }else if(ch!='#' && ch!='!'){
        T=new BiTNode;
        T->data=ch;
        CreatBiTree(T->lchild);
        CreatBiTree(T->rchild);
    }
}
void PreOrderTraverse(BiTree T){
    if(T){
        cout<<T->data<<" ";
        PreOrderTraverse(T->lchild);
        PreOrderTraverse(T->rchild);
    }
}
//层次顺序遍历:先进先出符合队列,先让第一层结点入队,然后依次入队;
//             依次出队就为层次顺序遍历
//度为1的结点个数
int sum=0;
int OneCount(BiTree T){
    SqQueue s;
    if(T){
        InitQueue(s);
        EnQueue(s,T);
        while(!IsEmpty(s)){
            BiTree temp;
            temp=DeQueue(s);
            if((temp->lchild && !temp->rchild) ||
               (!temp->lchild && temp->rchild)){
                sum++;
            }
            if(temp->lchild){
                EnQueue(s,temp->lchild);
            }
            if(temp->rchild){
                EnQueue(s,temp->rchild);
            }
        }
    }
    return sum;
}
void EnQueue(SqQueue &s,BiTree e){
    if(s.front==(s.rear+1)%m){
        cout<<"队列满了无法入队"<<endl;
    }else{
        s.base[s.rear]=*e;
        s.rear=(s.rear+1)%m;
    }
}
BiTree DeQueue(SqQueue &s){
    BiTree e;
    if(s.front==s.rear){
//        cout<<"队列空了无法出队"<<endl;
        return NULL;
    }else{
        *e=s.base[s.front];
        s.front=(s.front+1)%m;
        return e;
    }
}
//初始化循环队列
void InitQueue(SqQueue &s){
    s.base=new BiTNode[m];
    s.front=s.rear=0;
}
bool IsEmpty(SqQueue s){
    if(s.front==s.rear){
        return true;
    }else{
        return false;
    }
}

1.两个串相等的充要条件是( )。A.串长度相等B.串长度任意 C.串中各位置字符任意 D.串中各位置字符均对应相等 2.对称矩阵的压缩存储:以行序为主序存储下三角中的元素,包括对角线上的元素。二维下标为( i, j ),存储空间的一维下标为k,给出k与 i, j (i<j)的关系k=( ) (1<= i, j <= n , 0<= k < n*(n+1)/2)。 A.i*(i-1)/2+j-1 B.i*(i+1)/2+j C.j*(j-1)/2+i-1 D.j*(j+1)/2+i 3.二维数组A[7][8]以列序为主序的存储,算数组元素A[5][3] 的一维存储空间下标 k=( )。 A.38 B.43 C.26 D.29 4.已知一维数组A采用顺序存储结构,每个元素占用4个存储单元,第9个元素的地址为144,则第一个元素的地址是( )。A.108 B.180 C.176 D.112 5. 下面( )不属于特殊矩阵。 A.对角矩阵 B. 三角矩阵C. 稀疏矩阵 D. 对称矩阵 6. 假设二维数组M[1..3, 1..3]无论采用行优先还是列优先存储,其基地址相同,那么在两种存储方式下有相同地址的元素有( )个。 A. 3 B. 2 C. 1 D. 0 7. 若Tail(L)非空,Tail(Tail(L))为空,则非空广义表L的长度是( )。(其中Tail表示取非空广义表的表尾) A. 3 B. 2 C. 1 D. 0 8.串的长度是( )。 A.串中不同字母的个数 B.串中不同字符的个数C.串中所含字符的个数,且大于0 D.串中所含字符的个数 9.已知广义表(( ),(a), (b, c, (d), ((d, f)))),则以下说法正确的是( )。A.表长为3,表头为空表,表尾为((a), (b, c, (d), ((d, f))))B.表长为3,表头为空表,表尾为(b, c, (d), ((d, f)))C.表长为4,表头为空表,表尾为((d, f)) D.表长为3,表头为(()),表尾为((a), (b, c, (d), ((d, f))))10.广义表A=(a,b,c,(d,(e,f))),则Head(Tail(Tail(Tail(A))))的值为( )。(Head与Tail分别是取表头和表尾的函数) A.(d,(e,f)) B.d C.f D.(e,f)二、填空(每空 2 分,共 8 分)。 1.一个广义表为 F = (a, (a, b), d, e, (i, j), k),则该广义表的长度为________________。GetHead(GetTail(F))= _______________。 2.一个n*n的对称矩阵,如果以行或列为主序压缩存放入内存,则需要 个存储单元。 3.有稀疏矩阵如下: 0 0 5 7 0 0 -3 0 0 0 4 0 0 2 0 它的三元组存储形式为: 。 三、综合(共 22 分)。 1.(共8分)稀疏矩阵如下图所示,描述其三元组的存储表示,以及转置后的三元组表示。 0 -3 0 0 0 4 0 6 0 0 0 0 0 0 7 0 15 0 8 0 转置前(4分): 转置后(4分): 2. (共14分)稀疏矩阵M的三元组表如下,请填写M的转置矩阵T的三元组表,并按要求完成算法。 (1)写出M矩阵转置后的三元组存储(6分): M的三元组表: T的三元组表: i j e 2 1 3 3 2 4 4 2 5 4 3 5 5 1 6 5 3 6 i j e (2)如下提供了矩阵采用三元组存储时查找指定行号(m)和列号(n)元素值的算法框架,将代码补充完整(每空2分,共8分)。 typedefstruct{ inti,j; ElemType e; }Triple; typedefstruct{ Triple data[MAXSIZE+1]; //data[0]未用 intmu,nu,tu; //矩阵的行数,列数和非零元的个数 }TSMatrix; voidFind_TSMatrix(TSMatrix M, int m, int n, ElemType&e) //M为要查找的稀疏矩阵三元组存储,m为要查找的元素的行号,n为列号,e为查找后得到的值。 { for ( i=1 ; i<=M.tu ;i++) if( && ) { e=M.data[i].e; ; } if( ) e=0; }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值