VT-Unet代码框架

VT-Unet代码大体流程如下
对应embded_dim = 48
vt_unet.py文件
代码大体流程
详细Transformer 模块的计算与改进之后补充

### GCtx-UNet代码实现及相关 GitHub Repository GCtx-UNet 是一种基于 U-Net 架构的改进版本,通常用于医学图像分割或其他计算机视觉任务。它通过引入全局上下文注意力机制来增强特征表示能力[^3]。 目前尚未发现官方发布的名为 **GCtx-UNet** 的具体实现仓库。然而,可以通过以下方法找到类似的实现或相关研究: #### 方法一:搜索开源社区中的相似项目 可以尝试在 GitHub 或其他代码托管平台上使用关键词 `GCtx-UNet` 进行搜索。如果未找到确切匹配项,则可扩展至更广泛的领域,例如带有全局上下文模块 (Global Context Module, GCM) 和注意力机制的 U-Net 实现[^4]。 以下是几个可能相关的项目链接: 1. [Attention U-Net](https://github.com/LeeJunHyun/Image_Segmentation): 提供了多种变体的 U-Net 模型,其中部分实现了注意力机制。 2. [U-Net Variants](https://github.com/milesial/Pytorch-UNet/tree/master/unet): 支持不同类型的 U-Net 变种,包括一些具有全局上下文感知功能的设计。 #### 方法二:手动构建 GCtx-UNet 如果没有现成的实现可用,可以根据已知理论自行开发该网络结构。下面是一个简单的 Python/TensorFlow 示例框架,展示如何集成全局上下文模块到标准 U-Net 中: ```python import tensorflow as tf from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, Concatenate, GlobalAveragePooling2D, Dense, Reshape, Multiply def global_context_block(x, filters): gap = GlobalAveragePooling2D()(x) dense = Dense(filters // 8, activation='relu')(gap) output = Dense(filters)(dense) shape = tf.shape(x) output_reshaped = Reshape((1, 1, filters))(output) scale = Multiply()([x, output_reshaped]) return scale def gctx_unet(input_size=(256, 256, 3)): inputs = tf.keras.Input(input_size) conv1 = Conv2D(64, 3, activation='relu', padding='same')(inputs) pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) conv2 = Conv2D(128, 3, activation='relu', padding='same')(pool1) pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) context = global_context_block(conv2, 128) up3 = UpSampling2D(size=(2, 2))(context) merge3 = Concatenate(axis=3)([up3, conv1]) outputs = Conv2D(1, 1, activation='sigmoid')(merge3) model = tf.keras.Model(inputs=[inputs], outputs=[outputs]) return model ``` 此代码片段定义了一个基础版的 GCtx-UNet 结构,并集成了全局上下文块以提升性能[^5]。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值