// 本文主要对主流分割指标的公式以及别名做一个简单梳理
// 此外,由于iou与dice存在一定的公式换算关系,对于“目前论文中iou与dice不匹配”的现象是否可以判定作假做出一定说明
ACC:classification accuracy,描述分类器的分类准确率
计算公式为:ACC=(TP+TN)/(TP+FP+FN+TN)
BER:balanced error rate
计算公式为:BER=1/2*(FPR+FN/(FN+TP))
敏感度sensitivity / Recall / TPR:true positive rate,漏诊,描述识别出的所有正例占所有正例的比例
计算公式为:TPR=TP/ (TP+ FN)
FPR:false positive rate,描述将负例识别为正例的情况占所有负例的比例
计算公式为:FPR= FP / (FP + TN) = 1 - TNR
特异度specificity / TNR:true negative rate,误诊,描述识别出的负例占所有负例的比例
计算公式为:TNR= TN / (FP + TN)
精确率precision / PPV:Positive predictive value
计算公式为:PPV=TP / (TP + FP)
NPV:Negative predictive value
计算公式:NPV=TN / (FN + TN)
IOU / Jaccard:Intersection Over Union
计算公式:TP/(TP+FP+FN)
Dice / F1:
计算公式:2TP / (2TP+FP+FN) = 2 (Precision * Recall) / (Precision+Recall)
HD和ASSD:
一张图不解释
其中,IOU与DICE的换算关系如下:
IOU = DICE/(2-DICE)
Recall与DICE的换算关系如下:
DICE = 2 (Precision * Recall) / (Precision+Recall)
我们经常可以看到部分论文中会同时出现以上有相互之间换算关系的两个指标,会不禁发出疑问,两个指标只有一个不就行了?并且这两个指标还不符合换算关系,是不是在造假呢?
其实我们仔细研究就会发现,这两个指标的换算关系是作用于单个样本上的,也就是说在单个样本上,单个计算指标的最小单位上,这两个一定是一一对应的,但是在多个样本中,由于两个指标之间的非线性关系,在总体的结果上会有一定的不对应。
但根据多次实验以及观察其他文章发现,基本所有结果之间与计算所得结果都不会相差很大,绝大多数都在3%的误差以内,如果与计算结果差距大于10%,基本可以判定造假。