离散数学——Warshall算法求给定关系的传递闭包

/*Warshall算法求给定关系的传递闭包*/
#include<iostream>
#include<vector>
using namespace std;

void Warshall(vector<vector<int>>M1, vector<vector<int>>& M2);
void SumArray(vector<int>& a, vector<int>& b);
void MakeMartix(vector<vector<int>>& M);
void ShowMartix(vector<vector<int>>M);

void Warshall(vector<vector<int>>M1, vector<vector<int>>& M2) {//M1为由用户输入的关系矩阵,M2为存储输出的传递关系的矩阵
	for (int j = 0; j < M1.size(); j++) {//j为列
		for (int i = 0; i < M1[j].size(); i++) {//i为行
			if (M1[i][j] == 1)//第j列第i行元素<i,j>=1,则将第j行加到第i行上
				SumArray(M2[i], M2[j]);//M2=M1+M2
		}
	}
	for (int i = 0; i < M2.size(); i++) {
		for (int j = 0; j < M2[i].size(); j++) {
			if (M2[i][j] > 1)
				M2[i][j] = 1;
		}
	}
}

void SumArray(vector<int>& a, vector<int>& b) {//a=a+b
	for (int i = 0; i < a.size(); i++) {
		a[i] += b[i];
	}
}

void MakeMartix(vector<vector<int>>& M) {
	for (int i = 0; i < M.size(); i++) {
		cout << "输入第" << i + 1 << "行矩阵元素:";
		for (int j = 0; j < M[i].size(); j++) {
			cin >> M[i][j];
		}
	}
}

void ShowMartix(vector<vector<int>>M) {
	for (int i = 0; i < M.size(); i++) {
		for (int j = 0; j < M[i].size(); j++) {
			cout << M[i][j] << " ";
		}
		cout << endl;
	}
}
int main() {
	int N = 4;//设定集合包含的元素个数
	vector<vector<int>>M1(N, vector<int>(N));
	MakeMartix(M1);
	vector<vector<int>>M2(M1);
	cout << "原始关系矩阵为:" << endl;
	ShowMartix(M1);
	Warshall(M1, M2);
	cout << "由Warshall求得的传递闭包为:" << endl;
	ShowMartix(M2);
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值