离散数学中Warshall算法简析

离散数学中Warshall算法简析

最近学了离散数学的图论,突然感觉离散数学的作用十分强大,相信学好离散数学中的算法,编程的魅力也不言而喻。闲话不多说,这篇博客中记录的是Warshall算法的简单解析及C++代码实现。
问题引出:在一个图结构中,常常需要找两个节点之间有没有一条通路(通路长任意),也就是任意两点之间的可达情况,我们很自然会联想到用邻接矩阵来求可达矩阵,从而得出两点之间的可达情况。如:
这里写图片描述
在这个图中,可以写出其邻接矩阵为:
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
记为矩阵A。那么很明显在图中,V2与V1存在直接通路(即长是1),V1与V4之间也有直接通路,但是V2与V4之间没有长度是1的通路,但是存在边长是2的通路,然而这在矩阵A中没有相应的体现,因为矩阵元素M(2,4) == 0,于是我们找任意图中一点Vk,只要满足V(2k)乘以V(k4)!= 0[注意:括号中指的是下标],则证明V2可以借助Vk(此图中指的是V1)与V4连通。
以此类推,当想得到任意一点与其他各点通路是2的连接的时候(这里指的是Vi,Vj两点)就可以逐个计算满足:V࿰

### Warshall算法原理解释 Warshall算法主要用于计算给定有向图的传递闭包。传递闭包是指在一个关系 \( R \) 上,如果存在一条从节点 \( v_i \) 到节点 \( v_j \) 的路径,则在传递闭包中 \( (v_i, v_j) \) 应该属于这个新的关系。 为了理解Warshall算法的工作机制,可以考虑一系列矩阵序列 \( M_0, M_1, ..., M_n \),其中每个矩阵代表不同阶段的关系状态[^4]。具体来说: - **初始条件**:\( M_0 \) 是原始关系 \( R \) 的布尔矩阵表示形式。 - **迭代过程**:对于每一个 \( k = 0, 1, ..., n \),构建下一个矩阵 \( M_{k+1} \)。在这个过程中,主要关注的是如何判断是否存在从顶点 \( i \) 到顶点 \( j \) 并且只允许经过编号不大于 \( k+1 \) 的中间顶点的路径。 - 如果可以直接由 \( M_k[i][j] \) 得知这样的路径存在(即第一种情况),那么显然 \( M_{k+1}[i][j] \) 也应为 true; - 另一种可能是通过新增加的一个顶点 \( v_{k+1} \) 来连接两个原本不相连的顶点 \( i \) 和 \( j \),此时需要同时满足 \( M_k[i][k+1] \) 和 \( M_k[k+1][j] \) 都为 true 才能确认这一点。 最终得到的 \( M_n \) 就是原关系 \( R \) 经过传递闭包运算后的结果,在此矩阵里任何位置上的值为true都意味着对应的起点和终点之间确实有一条或多条间接通路。 ```c // C语言实现Warshall算法核心逻辑 void warshall(int matrix[][MAX_SIZE], int size){ for (int k = 0; k < size; ++k) for (int i = 0; i < size; ++i) for (int j = 0; j < size; ++j) matrix[i][j] |= (matrix[i][k] && matrix[k][j]); } ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值