离散数学中Warshall算法简析
最近学了离散数学的图论,突然感觉离散数学的作用十分强大,相信学好离散数学中的算法,编程的魅力也不言而喻。闲话不多说,这篇博客中记录的是Warshall算法的简单解析及C++代码实现。
问题引出:在一个图结构中,常常需要找两个节点之间有没有一条通路(通路长任意),也就是任意两点之间的可达情况,我们很自然会联想到用邻接矩阵来求可达矩阵,从而得出两点之间的可达情况。如:
在这个图中,可以写出其邻接矩阵为:
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
记为矩阵A。那么很明显在图中,V2与V1存在直接通路(即长是1),V1与V4之间也有直接通路,但是V2与V4之间没有长度是1的通路,但是存在边长是2的通路,然而这在矩阵A中没有相应的体现,因为矩阵元素M(2,4) == 0,于是我们找任意图中一点Vk,只要满足V(2k)乘以V(k4)!= 0[注意:括号中指的是下标],则证明V2可以借助Vk(此图中指的是V1)与V4连通。
以此类推,当想得到任意一点与其他各点通路是2的连接的时候(这里指的是Vi,Vj两点)就可以逐个计算满足:V