简介及相关概念:使用java是实现常用的排序算法;
稳定:如果排序前a在b前面,而a=b,经过排序后a依旧还在b的前面。
不稳定:如果未经排序a在b前面,而此时依旧a=b,经过排序后a可能出现在b的后面。
时间复杂度:是指排序时随着排序的数据规模的大小与所需的时间变化规律。
空间复杂度:是指排序时排序的数据规模与所需的空间变化规律
排序算法分类:
- 非线性时间比较类排序: 通过比较来决定元素间的相对次序,由于时间复杂度不能突破logn的,所以被称为非线性时间复杂度。
- 线性时间比较类排序:不通过比较来决定元素间的相对次序,可以突破基于时间复杂度为logn的下界,以线性时间运行,因此称为线性时间比较类排序。
分类图如下
时间复杂度图:
冒泡排序(bubble sort): 是一种简单排序算法,是通过比较两个相邻的元素大小,如果相邻的元素之间大小打不通,则进行交,把小的元素往前移动,直至排序的数据为有序的。(全套循环,每次查看相邻的元素大小,如果是逆序的,则进行交换。)
代码实现:
public void bubbleSort(int[] arr) {
int len = arr.length;
for (int i = 0; i < len - 1 ; i++) {
// 减少循环的范围,i 之后就把比较大的排到后面
for (int j = 0; j < len - i - 1; j++) {
// 相邻的两个元素进行比较
if (arr[j] > arr[j + 1]) {
// 交换位置
int temp = arr[j + 1];
// 大的往后移动
arr[j + 1] = arr[j];
// 小的前移
arr[j] = temp;
}
}
}
}
选择排序(seelection sort): 每次选择最小的元素放到待排序的数组前面。
插入排序(insertion sort):从前到后逐步构建有序的序列,,对为排序数据,在已排序序列中从后往前扫描,,找到响应的位置并插入,
代码实现如下:
public void selectionSort(int[] arr) {
int len = arr.length;
for (int i = 0; i < len - 1; i++) {
int minIndex = i, temp = arr[0];
for (int j = i + 1; j < len; j++) {
if (arr[j] < arr[i]) {
// 记录最小值
temp = arr[j];
minIndex = j;
arr[minIndex] = arr[i];
arr[i] = temp;
}
}
}
}
快速排序: 数组选择一个标杆privot,小的元素放在prviot左边,大的放在privot放在右边,然后对于左右子数组进行快拍,达到整个数组的有序。
public static void quickSort(int[] arr, int low, int high) {
int i, j, key;
if (low > high) {
return;
}
i = low;
j = high;
//temp就是基准位
key = arr[low];
while (i < j) {
//j向左移,直到遇到比key小的值
while(arr[j]>=key && i<j){
j--;
}
//i向右移,直到遇到比key大的值
while(arr[i]<=key && i<j){
i++;
}
//如果满足条件则交换
if (i < j) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
//最后将基准为与i和j相等位置的数字交换
arr[low] = arr[i];
arr[i] = key;
//递归调用左半数组
quickSort(arr, low, i - 1);
//递归调用右半数组
quickSort(arr, i + 1, high);
}
归并排序: 归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。
1、把长度为n的数组分为两个长度n/2的子数组。
2、对两个这个两个子序列进行归并排序,
3、将归并好的子序列合并成一个最终的结果。
实现源码如下:
public void mergeSort(int[] arr, int left, int right) {
if (left > right) {
int mid = (left + right) / 2;
mergeSort(arr, left, mid);
mergeSort(arr, mid + 1, right);
merge(arr, left, mid, right);
}
}
private void merge(int[] arr, int left, int mid, int right) {
/**
* 分割后左边的数组下标为[left, mid],右边数组下标的为[mid - 1, right],
* 此时左边的元素个数为 mid - left + 1, 右边的个位为 right -mid
*/
int LAL = mid - left + 1;
int RAL = right - mid;
// 加一操作是增加无穷大标志位
int[] leftArr = new int[LAL + 1];
int[] rightArr = new int[RAL + 1];
// 用新数组来一份为二
for (int i = 0; i < LAL; i++)
leftArr[i] = arr[left + i];
for (int i = 0; i < RAL; i++)
leftArr[i] = arr[mid + i + 1];
int i = 0, j = 0;
//将最大的正整数放在两个新数组的最后一位
leftArr[LAL] = Integer.MAX_VALUE;
rightArr[RAL] = Integer.MAX_VALUE;
// 数据小的往前移动。
for (int k = left; k < right; k++) {
if (leftArr[i] <= rightArr[j]) {
arr[k] = leftArr[i];
++i;
} else {
arr[k] = rightArr[j];
++j;
}
}
}
推排序(heap sort ): 一推插入(logn),取值O(1)
数据依次加入,到堆上,取出最大/最小元素并删除
代码实现如下:
public void heapSort(int[] arr) {
int length = arr.length;
// 开始创建傻逼的推(大推)
for (int i = (length - 1) / 2; i < length; i++) {
// 从第一个非叶子节点从下至上的,从右到左调整。
helper(arr, i, length);
}
// 调整堆结构 + 交换堆顶元素与末尾元素交换。
for (int i = length - 1; i > 0; i--) {
int temp = arr[i];
arr[i] = arr[0];
arr[0] = temp;
helper(arr, 0, length);
}
}
private void helper(int[] arr, int index, int max) {
int left = index * 2 + 1;
int right = index * 2 + 2;
int larges = 0;
if (left < max && arr[left] > arr[index]) {
larges = left;
} else {
larges = index;
}
if (right < max && arr[right] > arr[larges]) {
larges = right;
}
if (larges != index) {
int temp = arr[larges];
arr[larges] = arr[index];
arr[index] = temp;
// 递归直至调整符合最大推
helper(arr, larges, max);
}
}