- 博客(166)
- 收藏
- 关注
原创 Hive Hook 深度解析:原理、类型与实战应用
Hive Hook是Hive的插件化扩展机制,通过拦截SQL执行关键节点(如编译、执行、元数据变更)实现自定义逻辑。本文介绍了Hive Hook的核心原理、五大类型(PreExecute/PostExecute/PreCompile/PostCompile/MetaStore Hook)及其应用场景,并以SQL执行审计为例演示开发流程。开发时需注意:1)确保Hook版本与集群一致;2)性能敏感操作建议异步处理;3)异常需捕获避免阻断主流程。典型应用包括SQL审计、元数据监控、执行计划优化和资源控制等。
2025-08-29 17:24:09
1145
原创 Java动态执行工具选型指南:为什么Janino可能是你的最优解?
本文探讨了Java开发中动态执行代码的需求和工具选型问题,重点分析了Janino引擎的适用场景。文章建立了动态执行工具的四个核心选型维度:逻辑复杂度、性能敏感度、团队技术适配性和安全性要求。通过对比Janino与其他主流工具的特性,指出Janino最适合需要Java语法支持、中等复杂度、高频执行的场景,尤其适合纯Java技术栈团队。文章还提供了Janino的实践优化建议,包括缓存策略、安全控制和异常处理。最后给出了Janino的选型决策清单,帮助开发者判断是否适合采用该工具。
2025-08-24 16:48:38
423
原创 Janino 入门指南:轻量级 Java 表达式执行引擎
本文介绍了Janino这一轻量级Java动态编译执行工具。Janino能在运行时编译Java代码片段(表达式、语句块、类定义)并执行,具有轻量高效(核心JAR仅几百KB)和标准Java语法兼容的特点。文章演示了Janino的三种核心用法:通过ExpressionEvaluator执行简单表达式、用ScriptEvaluator执行代码块以及动态生成完整类定义。同时指出使用时需注意安全风险、性能开销和语法限制等事项。Janino适用于规则引擎、动态计算等需要运行时执行Java代码的场景,为开发者提供了灵活高效
2025-08-24 16:32:48
757
原创 JVM常用垃圾回收算法深度解析:原理、优缺点与适用场景
JVM垃圾回收算法的演进史,本质是对“效率、延迟、内存利用率”三者平衡的探索。标记-清除牺牲连续性换简单性;标记-复制牺牲内存换无碎片和高效分配;标记-整理牺牲效率换高内存利用率和连续性;分代和分区收集则通过精细化管理,在复杂场景中找到平衡点。理解GC算法不仅能帮助开发者调优JVM参数,更能培养“内存效率”意识——编写代码时考虑对象生命周期、避免不必要的大对象创建,从源头减少GC压力。最终,没有最好的算法,只有最适合业务场景的选择。
2025-08-24 16:18:02
814
原创 深入理解Java GC Root:垃圾回收的核心锚点
识别并回收不再被使用的对象,释放内存资源。而判断一个对象是否"不再被使用"的关键,就是看它是否能通过GC Root被访问到。GC Root是指在Java虚拟机中,那些永远不会被垃圾回收器回收的对象引用。这些引用作为垃圾回收的"起点",构成了对象可达性分析的根节点集合。在垃圾回收过程中,虚拟机从这些根节点出发,遍历所有可直接或间接访问的对象,将其标记为"存活";而无法通过任何GC Root访问到的对象,则被判定为"垃圾",等待被回收。
2025-08-24 15:04:34
893
原创 ClickHouse MergeTree Compaction深度剖析
摘要:ClickHouse MergeTree引擎的Compaction机制深度解析 本文深入剖析ClickHouse MergeTree引擎的核心Compaction机制。作为列式存储的性能标杆,MergeTree采用"不可变数据块+后台合并"的设计,通过Part划分存储数据,包含数据文件、标记文件、主键索引等组件。Compaction机制与LSM-Tree存在本质差异,采用贪心策略和大小梯度规则,通过定时触发、事件触发和手动触发三种方式启动合并流程。文章详细解析了Part选择策略和执
2025-08-23 15:25:10
995
原创 多级缓存架构下的数据一致性保障
多级缓存数据一致性解决方案 核心问题与风险 多级缓存架构中,数据不一致主要源于数据副本同步延迟和并发更新竞争,可能导致库存超卖、金额显示错误等严重业务问题。 关键设计原则 一致性分级:根据业务需求选择强一致性、最终一致性或弱一致性 更新策略明确:确定更新触发者、时机和失败处理方案 并发控制:通过锁机制或版本号避免更新冲突 主流解决方案 1. 缓存更新策略 缓存旁路模式:读时加载,写时失效(适合读多写少场景) 写透模式:通过缓存中间件同步更新数据库(强一致性场景) 写回模式:异步批量更新数据库(高性能写场景)
2025-08-22 13:41:26
922
原创 深入解析YARN资源调度策略:配置实战与场景选择
单用户/小型集群(<10节点) 推荐使用 FIFO调度器 核心原因分析: 实现简单,无需复杂配置 没有多租户资源竞争问题 小规模集群资源利用率差距不明显 多部门共享的企业集群 推荐使用 容量调度器 核心原因分析: 严格的资源隔离保障生产稳定性 配额管理清晰,避免部门间资源抢占 支持队列层级划分匹配组织结构 动态负载的研究型集群 推荐使用 公平调度器 核心原因分析: 自动平衡突发任务与长期任务 权重配置灵活适应不同项目优先级 空闲资源共享提升整体利用率 混合计算(批处理+实时) 推荐使用 双层调度策略
2025-08-22 11:16:40
828
原创 Redis热点数据查询优化
摘要: Redis在高并发场景下易出现热点数据问题,表现为节点负载倾斜、响应延迟增加甚至宕机风险。本文系统分析热点数据的成因(如流量集中、数据分布不均等)及危害,提出多维度解决方案: 架构优化:通过数据分片、本地缓存前置、读写分离分散压力; 数据优化:细化缓存粒度,采用高效数据结构,优化更新策略; 配置与运维:调整内核参数,实时检测热点并动态迁移,升级硬件资源; 场景实践:如秒杀采用分片+限流,推荐数据异步更新,计数器本地累加。综合运用可显著提升Redis热点数据承载能力,保障服务稳定性。
2025-08-21 13:45:26
1092
原创 服务器负载过高深度剖析
服务器负载过高是运维中的常见问题,涉及硬件、软件、网络等多方面因素。本文系统分析了七大类核心原因:1)硬件资源瓶颈(CPU、内存、磁盘I/O、网络);2)软件配置不当(内核参数、服务启动参数、资源隔离);3)应用程序问题(低效代码、数据库操作、并发管理);4)网络因素(突发流量、DDoS攻击);5)外部攻击(恶意进程、挖矿程序)。针对每类问题提供了排查指标和解决方向,如使用top、iostat等工具监控资源使用,分析线程状态定位代码问题,结合日志和安全工具检测异常流量和恶意行为。通过系统化的排查思路,可快速
2025-08-21 11:18:09
479
原创 深入解析Hudi并发控制:如何协调写入、读取与表服务的访问
Hudi通过多层并发控制机制解决数据湖多角色访问难题:快照隔离确保读写一致视图,乐观并发控制(OCC)协调写入器冲突,多版本并发控制(MVCC)实现表服务与写入解耦,非阻塞并发控制(NBCC)解决活锁问题。这种分层设计在保证数据一致性的同时,显著提升了高并发场景下的系统性能,为数据湖提供了可靠的并发管理方案。
2025-08-19 09:49:01
1180
原创 深入解析JVM CMS垃圾收集器:原理、机制与实战调优
CMS垃圾收集器是Java虚拟机中具有里程碑意义的低延迟回收器,通过并发标记清除算法将STW停顿控制在毫秒级。其核心设计包括分代内存布局、四阶段回收流程(初始标记、并发标记、重新标记、并发清除)以及增量更新、记忆集等关键技术。虽然解决了传统GC的延迟问题,但存在浮动垃圾、内存碎片等固有挑战。调优时需合理设置堆大小、触发阈值(CMSInitiatingOccupancyFraction)等参数,并关注并发模式失败、Remark停顿等典型问题。CMS适用于交互式应用场景,但随着G1等新一代收集器的成熟,已逐渐退
2025-08-17 15:39:27
826
原创 深入解析JVM G1垃圾收集器:原理、机制与实战调优
G1垃圾收集器是Java 9及以后版本的默认收集器,针对大内存应用场景设计,通过Region化内存布局和"垃圾优先"策略实现低延迟和高吞吐量。G1将堆划分为大小相等的Region,动态管理新生代和老年代,优先回收垃圾占比高的Region。其回收流程包括Young GC、并发标记和Mixed GC,利用记忆集跟踪跨Region引用,SATB机制保证并发标记准确性,并特殊处理大对象。调优建议包括设置合理的堆大小、Region尺寸、停顿时间阈值等参数,以平衡延迟和吞吐量。G1适合4GB以上堆内
2025-08-16 16:18:34
894
原创 Flink 集成 Cassandra
本文详细介绍了Apache Flink与Cassandra集成的实战方法,涵盖核心依赖配置、数据读写全流程。首先强调版本兼容性,提供依赖管理示例和两种连接配置方式(配置文件与代码动态配置)。在数据写入部分,展示了通过POJO映射实现基础写入,并给出批量写入、一致性级别等高级优化配置。对于数据读取,分别介绍了批处理场景的直接读取和流处理场景的轮询机制实现。文章内容实用性强,包含完整代码示例,可帮助开发者快速实现高性能流处理系统与分布式存储的高效协同。
2025-08-13 14:28:06
494
原创 Spring Boot 集成 Cassandra
本文介绍了如何使用Spring Boot集成Apache Cassandra数据库。主要内容包括:1) 通过Maven引入Spring Data Cassandra核心依赖;2) 配置application.properties文件连接Cassandra集群;3) 使用注解实现实体类与Cassandra表的映射,包括简单主键、复合主键和分离式主键三种场景;4) 通过继承CassandraRepository接口快速实现CRUD操作。文章提供了完整的代码示例和注解说明,帮助开发者快速掌握Spring Boot
2025-08-13 14:00:39
672
原创 ScyllaDB 架构深度解析
摘要:ScyllaDB是一款专为云原生架构设计的高性能分布式数据库,通过底层重构实现了极致性能和低延迟。其核心架构采用共享无(Shared-Nothing)原则,基于shard-per-core设计,每个CPU核心拥有独立资源,消除锁竞争。数据采用虚拟环分布,支持vNodes和Tablets两种方式实现均衡负载。存储层面基于优化的LSM树结构,结合Memtable、Commitlog和SSTables实现高性能读写。ScyllaDB兼容Cassandra和DynamoDB API,支持shard-aware
2025-08-13 11:01:24
1193
原创 深度对比:Cassandra 与 Redis 的一致性哈希算法设计差异
摘要: 分布式系统 Cassandra 和 Redis Cluster 虽然均采用一致性哈希,但设计差异显著。Cassandra 使用64位连续令牌环和虚拟节点(VNodes)实现动态分片,数据按分区键聚合存储,支持多副本分布式存储与灵活一致性配置;Redis Cluster 则采用16384个离散哈希槽,物理节点直接绑定槽,数据独立分布且依赖主从复制保证高可用。两者在哈希空间连续性、节点映射机制、数据分布逻辑和副本策略上的差异,反映了分布式数据库与分布式缓存的不同设计哲学。
2025-08-12 17:38:11
1043
原创 Cassandra 一致性哈希算法:分布式数据分片的优雅实现
本文深入解析了Apache Cassandra如何通过一致性哈希算法解决分布式存储系统的数据分布和扩展难题。传统哈希取模法存在节点增减时数据大规模迁移的问题,而Cassandra采用一致性哈希环,结合令牌(Token)和虚拟节点(VNodes)的创新设计,实现了数据均衡分布和高效扩展。核心机制包括:MurmurHash3算法计算分区键令牌,VNodes分散物理节点负载,TokenMetadata维护哈希环状态。数据路由时通过环形查找定位主节点和副本,节点变更时仅需迁移相邻VNodes的数据。Cassandr
2025-08-12 17:31:43
1018
原创 Bloom过滤器如何为LSM树加速查询?从Cassandra源码看底层实现
本文分析了Bloom过滤器在LSM树存储引擎中的优化作用,以Apache Cassandra为例,从源码层面解析其实现原理。Bloom过滤器通过无假阴性特性快速过滤不包含目标数据的SSTable,减少无效IO。文章详细阐述了其在SSTable构建时的初始化过程、基于Murmur哈希的分区键写入逻辑,以及查询时的多级过滤机制。同时探讨了假阳性监控与参数调优的重要性,以及如何与LSM树层级结构协同提升查询效率。Bloom过滤器通过内存换IO的方式,有效解决了LSM树查询性能的痛点。
2025-08-12 14:22:34
900
原创 Apache Cassandra 3.11.6 集群部署:从环境准备到运维监控
本文详细介绍了Apache Cassandra 3.11.6集群的完整部署流程。首先规划5节点集群架构,明确节点角色与硬件配置要求。随后逐步完成基础环境搭建,包括JDK安装、Cassandra部署、用户权限配置等核心步骤。重点讲解了cassandra.yaml配置文件的优化调整,以及JVM内存的关键参数设置。最后提供了集群启停、状态验证的详细操作指南,并介绍nodetool工具的常用运维命令,包括集群监控、数据备份等核心功能。通过本文的标准化部署方案,可快速构建一个高可用的Cassandra分布式数据库集群
2025-08-11 16:34:21
1118
原创 Apache Cassandra CQL 完全指南:从基础到高级实践
摘要:本文系统介绍了Apache Cassandra查询语言CQL的核心概念与使用技巧。首先对比CQL与SQL的差异,强调CQL为分布式架构优化的特点,包括放弃复杂关联查询以换取高可用性。详细解析了Keyspace、Table等核心数据模型术语,重点说明分区键对数据分布的关键作用。在DDL部分,通过示例演示Keyspace和Table的创建与管理,突出Cassandra"查询优先"的设计原则。DML操作部分则深入讲解数据插入、查询、更新和删除的语法与限制,特别强调必须基于分区键查询的重要
2025-08-10 16:15:46
994
原创 ScyllaDB vs Redis:分布式数据存储的场景化抉择
摘要: ScyllaDB与Redis作为现代数据架构中的两大存储系统,分别针对海量持久化存储与实时内存处理场景设计。ScyllaDB基于分布式宽列存储,擅长PB级数据的高吞吐读写(毫秒级延迟),适合IoT时序数据、交易记录等场景;Redis以内存操作为核心,提供微秒级响应,支撑缓存、实时排行榜等需求。两者在架构上存在根本差异:ScyllaDB采用磁盘优先的LSM树存储和共享无锁模型,支持线性扩展;Redis依赖内存数据结构与单线程事件循环,受限于内存容量。选型需权衡数据规模(TB级选Redis,PB级选Sc
2025-08-10 15:34:02
879
原创 ScyllaDB vs Cassandra:宽列NoSQL数据库的性能与演进之争
摘要:Apache Cassandra和ScyllaDB作为宽列存储NoSQL数据库各具优势。Cassandra凭借成熟稳定的分布式架构被广泛采用,但受限于JVM性能。ScyllaDB采用C++重构核心引擎,通过Seastar框架优化并发模型和I/O调度,性能比Cassandra提升3-6倍,延迟降低50%以上。ScyllaDB在保持协议和数据格式兼容性的同时,增加了自动调优、工作负载隔离等创新功能。选型建议:高吞吐、低延迟场景优先选择ScyllaDB;生态依赖深或低负载场景可继续使用Cassandra。迁
2025-08-10 15:23:47
1125
原创 ScyllaDB vs Aerospike:高性能NoSQL数据库对比
摘要: ScyllaDB与Aerospike作为高性能NoSQL数据库的代表,在性能、架构和成本效益上存在显著差异。测试显示,ScyllaDB在相同硬件条件下,读取吞吐量达700万次/秒(领先Aerospike 40%),写入性能提升40%-100%,且P99延迟仅4毫秒。其宽列存储模型、无界扩展能力和CQL兼容性使其在复杂查询和大规模部署中更具优势,而Aerospike在简单键值场景和低延迟(≤1ms)方面表现突出。成本上,ScyllaDB开源版无功能限制,相同负载下TCO比Aerospike低35%。综
2025-08-10 15:04:15
929
原创 Apache Cassandra 基础知识详解
Apache Cassandra是一款高可用、高性能、分布式的NoSQL数据库,专为处理海量结构化数据而设计。它最初由Facebook开发,用于解决其收件箱搜索功能的扩展性问题,后来于2008年开源,并在2010年成为Apache软件基金会的顶级项目。如今,Cassandra已被Netflix、Twitter、Uber、Apple等众多科技巨头广泛采用,支撑着每天数十亿次的读写操作。
2025-08-10 14:53:13
783
原创 Apache Cassandra 快速入门
本文介绍了Apache Cassandra这一高性能分布式NoSQL数据库的核心优势和使用方法。Cassandra具备线性可扩展性、高可用性和灵活一致性级别等特性,适合处理海量数据。文章详细讲解了通过Docker快速搭建Cassandra环境的方法,并深入解析了其数据模型中的键空间、表、列和分区等核心概念。通过用户活动跟踪系统的实例,演示了创建键空间、表结构设计、数据CRUD操作等基本操作。此外,还介绍了如何将单节点集群扩展为多节点集群,展示了Cassandra强大的扩展能力。这些内容为开发者快速掌握Cas
2025-08-10 14:44:05
465
原创 Hive数据倾斜自动优化底层实现揭秘——从源码看Skew Join优化机制
摘要:本文深入解析Hive的数据倾斜优化机制,重点剖析SkewJoinOptimizer实现原理。数据倾斜问题源于Shuffle阶段Key分布不均,Hive通过"拆分倾斜数据"策略:先检测高频Key(如订单系统中的热门商品ID),再将Join作业拆分为非倾斜数据常规处理和倾斜数据特殊处理(如Map Join广播)。源码分析显示,优化器通过规则匹配触发(TS→RS→JOIN模式),利用SkewJoinProc处理器收集表扫描算子、识别倾斜列值,并重写执行计划。最终通过插入过滤算子和Unio
2025-08-05 14:40:40
1066
原创 Redis Bloom Filter:概率型数据结构的原理与实践
Redis Bloom Filter是一种高效的概率型数据结构,能在海量数据场景中以极小内存实现快速存在性判断。其核心原理基于位数组和多个哈希函数,通过空间换时间实现O(1)查询复杂度,但会存在概率性误判。Redis通过RedisBloom模块提供完整实现,支持动态扩容和多种操作命令,适用于缓存穿透防护、数据去重等场景。最佳实践包括合理设置容量与误判率、处理误判结果以及优化内存使用。虽然不支持删除操作且误判率随元素增加而上升,但其空间效率优势使其成为处理大规模数据查询的理想选择。
2025-07-30 13:41:37
953
原创 Guava BloomFilter详解:原理、使用与最佳实践
BloomFilter(布隆过滤器)是一种空间效率极高的概率性数据结构,用于快速判断一个元素是否属于某个集合。它的核心特点是存在误判率(False Positive Probability):当判断"元素存在"时可能出错,但判断"元素不存在"时一定正确。这种特性使其非常适合需要高效去重或存在性检查的场景,如缓存穿透防护、海量数据去重等。Google Guava库中的类实现了这一数据结构,提供了简洁易用的API,同时兼顾了性能与可扩展性。本文基于Guava 20.0版本的实现,深入解析其原理与实践。
2025-07-30 11:18:28
1012
原创 Java大文件上传下载:分片与断点续传的实现之道
摘要: 本文探讨Java环境下大文件传输的技术方案,针对传统单文件上传的内存溢出、网络容错差等问题,提出分片传输与断点续传的解决方案。分片传输通过将文件拆分为多个独立分片上传,降低单次传输压力;断点续传则记录传输进度,支持异常中断后继续传输。文章详细解析了前端文件分片、断点检测的实现逻辑(基于JavaScript的File API),以及后端分片接收、进度记录与文件合并的Spring Boot代码(使用Redis存储进度),为开发者提供了一套完整的大文件高效传输实现方案。
2025-07-28 13:54:07
929
原创 ClickHouse索引原理及优化原则
ClickHouse的高效查询性能源于其独特的索引体系,包括主键索引、跳数索引和二级索引。主键索引基于排序键的颗粒化定位,通过预先排序和分块存储实现快速数据过滤;跳数索引则通过数据块统计信息加速大范围查询;二级索引为高频非排序键查询提供辅助支持。优化关键在于:合理设计排序键(优先高频过滤字段、避免低基数、控制字段数量),针对性使用跳数索引(选择合适类型、避免高基数均匀字段),谨慎添加二级索引(平衡查询与写入性能)。通过定期评估索引有效性,实现查询性能与写入成本的最佳平衡,从而充分发挥ClickHouse在海
2025-07-27 16:05:05
1101
原创 Java零拷贝技术:原理深度剖析与实战示例
本文深入解析Java中的零拷贝技术,通过对比传统IO操作与零拷贝的性能差异,揭示其减少数据拷贝和上下文切换的核心原理。重点探讨FileChannel.transferTo和MappedByteBuffer两种实现方式:前者通过sendfile系统调用实现文件到Socket的高效传输(3次拷贝),后者借助mmap实现用户空间直接访问内核缓冲区(2次DMA拷贝)。文章提供文件复制和网络传输的实战代码示例,实测显示零拷贝技术可提升30%-50%的IO性能并显著降低CPU消耗。适用于大文件传输、高并发网络通信等场景
2025-07-27 15:14:21
1206
原创 Aerospike与Redis深度对比:从架构到性能的全方位解析
摘要:本文介绍了Java开发者如何高效使用Aerospike数据库,重点探讨了对象映射和Spring Data集成两大核心功能。通过aerospike-mapper框架,可实现Java对象与Aerospike记录的无缝转换,减少模板代码。同时结合Spring Data Aerospike模块,开发者能以熟悉的Repository模式操作数据库,显著提升开发效率。文章详细讲解了从实体类注解定义到AeroMapper API使用,再到Spring Boot集成的全流程,为构建高性能数据访问层提供了完整解决方案,
2025-07-26 15:49:47
1018
原创 Aerospike Java客户端进阶:对象映射与Spring Data集成实战
摘要:本文介绍了Java开发者如何高效使用Aerospike数据库,重点探讨了对象映射和Spring Data集成两大核心功能。通过aerospike-mapper框架,可实现Java对象与Aerospike记录的无缝转换,减少模板代码。同时结合Spring Data Aerospike模块,开发者能以熟悉的Repository模式操作数据库,显著提升开发效率。文章详细讲解了从实体类注解定义到AeroMapper API使用,再到Spring Boot集成的全流程,为构建高性能数据访问层提供了完整解决方案,
2025-07-26 15:31:04
917
原创 Aerospike Java客户端核心API实战指南:从基础操作到高级功能全解析
Aerospike Java客户端提供了高效访问Aerospike数据库的API,支持多种核心操作。本文从实战角度解析了12个关键示例,涵盖客户端初始化、数据写入与读取等场景。客户端初始化需要配置连接策略,支持基础连接和企业版认证。数据写入通过put()方法实现全量写入、部分更新和条件写入。数据读取则提供get()和select()两种方式,前者获取完整记录,后者可指定字段减少IO开销。每个示例都标注了官方文档出处,帮助开发者快速掌握Aerospike Java客户端的核心功能与最佳实践。
2025-07-26 15:25:40
1130
原创 详解Aerospike数据库在Linux系统上的安装流程
本文详细介绍了Aerospike数据库在Linux系统上的安装部署流程。首先概述了系统兼容性要求,包括支持的64位Linux发行版版本及依赖项(如libcurl)。随后分步骤讲解了安装包的下载方法、命名规则及解压安装过程,涵盖RPM/Debian两种包管理方式。最后说明了安装后的基础配置,包括服务管理、存储设备设置、企业版feature-key配置等关键环节。全文提供了从环境准备到运行维护的完整指导,帮助用户顺利完成Aerospike数据库部署。
2025-07-26 14:40:50
1079
原创 Aerospike架构深度解析:打造web级分布式应用的理想数据库
提供灵活可扩展的平台,支撑亿级用户规模的应用;保留传统数据库的ACID可靠性,不牺牲数据一致性;最小化人工干预,实现高效运维。这些目标的实现,离不开其三层架构的精妙设计——客户端层、分布层、数据存储层,三层协同工作,既各司其职又紧密配合,共同构建了Aerospike的核心竞争力。
2025-07-26 14:34:18
1122
原创 Aerospike:从诞生到超越,为何它成了高并发场景的新选择?
摘要:Aerospike作为一种新型分布式数据库,在高并发、海量数据场景中展现出独特优势。其混合存储架构(内存索引+SSD数据)既保证了高性能又降低了成本,单节点可支撑10TB数据。相比Redis,Aerospike在吞吐量(高出50%)、扩展性(无上限)和成本(仅为1/5)方面表现更优,尤其适合超100GB数据量、要求99.99%可用性的复杂场景。但Redis在中小规模缓存等简单场景仍具优势,技术选型需结合实际需求。
2025-07-25 17:44:11
942
原创 如何优雅调整Doris key顺序
摘要:Doris数据表Key顺序调整的高效迁移方案 针对Doris无法直接修改表Key顺序的问题,本文提出了一种高效的数据迁移解决方案。传统方法在TB级数据迁移时面临资源消耗大、集群稳定性风险等问题,而Spark/Flink连接器的分区过滤下推失效导致全表扫描。核心解决思路是利用Doris原生特性,通过tablet粒度分批迁移:首先查询所有分区和对应tablet,去重后按tablet分批执行迁移。方案通过Python脚本自动化实现,包含元数据记录、异常处理和资源控制,有效降低集群负载
2025-07-19 18:00:23
1168
原创 ClickHouse 分区机制详解:规则、合并与实践指南
摘要:本文深入解析ClickHouse的分区机制,包括分区规则、目录命名、合并过程及开发实践要点。重点分析了分区ID生成逻辑(整数、时间、哈希等类型),分区目录命名格式(PartitionId_MinMaxBlockNum_Level),以及体现LSM特性的异步合并过程。针对实际开发,提出避免过细分区、合理设计ORDER BY、禁止客户端指定分区等优化建议,强调以业务查询模式为导向的分区设计原则。通过理解这些机制,可有效提升ClickHouse在大规模数据场景下的查询性能。
2025-07-13 16:20:37
1076
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅