- 博客(175)
- 收藏
- 关注
原创 ClickHouse 分区机制详解:规则、合并与实践指南
摘要:本文深入解析ClickHouse的分区机制,包括分区规则、目录命名、合并过程及开发实践要点。重点分析了分区ID生成逻辑(整数、时间、哈希等类型),分区目录命名格式(PartitionId_MinMaxBlockNum_Level),以及体现LSM特性的异步合并过程。针对实际开发,提出避免过细分区、合理设计ORDER BY、禁止客户端指定分区等优化建议,强调以业务查询模式为导向的分区设计原则。通过理解这些机制,可有效提升ClickHouse在大规模数据场景下的查询性能。
2025-07-13 16:20:37
326
原创 JVM与系统性能监控工具实战指南:从JVM到系统的全链路分析
gcutil输出解析以百分比展示各区域使用率,更直观地判断内存区域是否已满(如E区使用率持续90%+可能导致频繁YGC)。JVM与系统性能监控工具是Java工程师的"听诊器",熟练掌握jstat(GC监控)、jmap(内存分析)、jstack(线程诊断)、vmstat(系统全局)、pidstat(进程线程级)的用法,能让你从猜测问题转变为数据驱动定位。
2025-07-12 17:05:03
441
原创 memleak揪出内存泄漏元凶:eBPF时代的内存排查神器
实时性:动态跟踪无需重启进程,适合生产环境低开销:eBPF技术实现内核级跟踪,性能损耗远低于valgrind精准性:直接关联调用栈,缩短从发现泄漏到定位代码的时间memleak作为eBPF技术的典型应用,重新定义了内存泄漏排查的效率与体验——从“猜泄漏”到“看得到泄漏点”,从“离线分析”到“生产环境实时跟踪”。掌握它的使用,无论是C/C++程序的显性泄漏,还是第三方库的隐性泄漏,都能快速定位,让内存问题不再成为系统稳定性的“暗礁”。如果你还在为内存泄漏头疼,不妨试试memleak。
2025-07-12 16:53:29
393
原创 实战指南:用pmap+gdb排查Linux进程内存问题
本文介绍了在Linux系统中使用pmap和gdb工具排查进程内存问题的实用指南。首先通过pmap查看进程内存地址空间,重点关注异常的内存段排序和分析;然后利用gdb进行内存内容解析,定位内存泄漏或异常占用的根源。文章详细讲解了两个工具的使用方法、参数说明和实战技巧,并通过Java进程堆外内存泄漏的完整案例演示排查流程。最后总结了最佳实践,包括操作时机、工具组合和长期监控建议,帮助开发者高效解决各类内存问题。
2025-07-12 16:44:29
1012
原创 Flink自定义函数
Flink 自定义函数(UDF)扩展 Table API/SQL 能力,支持标量函数、表值函数、聚合函数和表值聚合函数四种类型,分别用于值转换、数据拆分、聚合计算和分组统计等场景。实现要点包括:继承对应基类(如 ScalarFunction)、实现核心逻辑方法(eval/accumulate)、注册函数并调用。关键技巧涉及类型注解(@DataTypeHint)、参数命名(@ArgumentHint)和确定性声明。UDF 通过 open/close 管理生命周期,支持异步和批量处理优化。
2025-07-10 14:27:53
728
原创 Flink 2.0 DataStream算子全景
摘要:本文深入解析Apache Flink 2.0的DataStream API算子体系,涵盖核心概念(数据流拓扑、算子链、并行度)、三大算子类型(转换、连接、物理分区)及高级特性(状态管理、时间窗口、容错机制)。重点探讨了算子优化策略,包括链化控制、状态管理、并行度配置和数据倾斜处理,并总结了构建高效流处理pipeline的五大原则。通过系统化的算子分类和最佳实践指导,为开发者提供Flink实时流处理的全面技术参考。(150字)
2025-07-10 14:12:37
609
原创 Doris用户管理
Doris用户管理操作与权限要求深度解析:系统详细说明用户创建、修改、删除等全流程操作规范,包括用户标识格式(username@'userhost')、核心权限关联(Admin_priv/Grant_priv)。重点阐述不同角色执行用户管理的权限边界,如创建用户需Grant_priv权限,删除用户需GLOBAL层级Grant_priv,密码修改区分自身/他人操作权限。提供典型场景配置示例和权限对照表,强调"最小权限原则"实施建议,确保系统权限体系安全可控。操作后需通过SHOW GRANT
2025-07-10 11:11:48
276
原创 操作系统级TCP性能优化:高并发场景下的内核参数调优实践
本文深入探讨了高并发网络场景下的操作系统内核TCP/IP协议栈优化策略。文章从五个维度展开:1)连接管理参数优化,包括监听队列、半连接队列和TIME_WAIT状态处理;2)缓冲区与吞吐量优化,涉及动态调整接收/发送缓冲区;3)拥塞控制算法选择与队列管理;4)系统资源限制设置,如文件描述符和端口范围;5)连接稳定性优化,包括超时设置和抗攻击机制。通过合理配置内核参数如net.core.somaxconn、tcp_rmem/wmem和BBR算法等,可以有效提升系统在高并发场景下的网络性能和稳定性。
2025-07-07 17:50:45
834
原创 Flink ClickHouse 连接器维表源码深度解析
Flink ClickHouse Connector通过实现LookupTableSource接口提供维表功能,核心类ClickHouseDynamicTableSource负责配置和创建维表查询组件。该功能支持流处理中实时查询ClickHouse数据,通过ClickHouseRowDataLookupFunction执行JDBC查询,并可选配置缓存提升性能。使用时需在SQL中定义维表并进行JOIN关联,系统会自动处理实时查询和数据关联。主要特性包括非嵌套键支持、可配置重试机制以及部分缓存策略(基于访问/写
2025-07-06 15:48:01
416
原创 Flink ClickHouse 连接器数据读取源码深度解析
Flink ClickHouse连接器源码解析摘要:该连接器通过AbstractClickHouseInputFormat抽象基类及其子类ClickHouseBatchInputFormat和ClickHouseShardInputFormat实现数据读取功能。核心类采用建造者模式构建,支持字段名、过滤条件等参数配置。针对不同场景,分别提供批量读取(减少数据库交互)和分片读取(并行处理分布式数据)两种实现方式。源码通过连接管理、参数校验和智能路由(根据表类型自动选择输入格式)等机制,确保高效稳定地从Clic
2025-07-06 15:44:10
547
原创 Flink ClickHouse 连接器数据写入源码深度解析
Flink ClickHouse 连接器源码分析:数据写入机制探究 摘要:本文深入剖析了Flink与ClickHouse集成连接器的数据写入实现机制。研究围绕AbstractClickHouseOutputFormat核心类及其子类展开,揭示了两种主要写入模式:ClickHouseBatchOutputFormat实现批量写入优化吞吐量,ClickHouseShardOutputFormat支持分布式表的分片写入。通过建造者模式的设计,连接器提供了灵活的参数配置方式,并自动判断使用本地表或分布式表策略。源码
2025-07-06 15:42:33
954
原创 Hadoop高可用集群搭建
本文详细介绍了基于CentOS 7搭建Hadoop 3.X高可用集群的全流程。首先明确了环境要求,包括CentOS 7.x、JDK 8+、Zookeeper 3.7+和Hadoop 3.X等基础组件,并提供了集群节点规划方案。接着指导完成网络配置、SSH免密登录等准备工作。在Zookeeper集群部署环节,详细说明了安装配置、节点同步和启动验证步骤。文章重点解析了Hadoop各核心配置文件(hadoop-env.sh、core-site.xml、hdfs-site.xml等)的关键参数设置。最后介绍了集群启
2025-07-06 15:09:18
799
2
原创 Hadoop YARN 命令行工具完全指南
监控集群资源使用情况管理和调度应用程序诊断和解决常见问题动态调整集群配置建议结合 YARN Web UI(默认地址:http://rm-host:8088)使用,以获得更直观的集群视图。在生产环境中,可将常用命令封装为脚本,提高操作效率。
2025-07-06 15:06:58
311
原创 HDFS Java API 开发指南:从基础操作到高级应用
HDFS (Hadoop Distributed File System) 作为大数据生态的核心存储系统,提供了分布式、高容错、高吞吐量的数据存储能力。通过 Java API 操作 HDFS 是开发大数据应用的基础技能。本文将基于你的笔记,详细解析 HDFS Java API 的使用方法,并提供完整的代码示例和最佳实践。
2025-07-06 15:04:22
259
原创 HDFS文件系统Shell命令详解
本文详细介绍了HDFS Shell的常用命令及使用技巧。主要内容包括:HDFS Shell命令的基本格式与URI路径规范;文件操作命令(查看、权限、复制、移动删除);目录操作命令(创建、查看);高级命令(文件合并、副本设置、文件测试);与Unix命令结合的实用技巧;以及HDFS与Unix命令对比表。文章还强调了路径格式、权限限制和性能优化等注意事项,为大数据开发和管理提供了基础操作指南。掌握这些命令能有效提升HDFS文件系统管理效率。
2025-07-06 15:01:45
420
原创 HDFS写入流程剖析
NameNode:管理文件系统命名空间和客户端对文件的访问DataNode:负责存储实际的数据块,执行数据块的读写操作:辅助NameNode,定期合并编辑日志与镜像文件Block:数据存储的基本单位,默认大小为128MB(HDFS 3.x)这种主从架构设计使得HDFS能够处理PB级数据,并具备高容错性和水平扩展性。HDFS的写入流程涉及客户端、NameNode和多个DataNode之间的复杂交互,理解这一过程对于优化大数据工作负载至关重要。
2025-07-06 14:51:45
681
原创 Flink ClickHouse 连接器:实现 Flink 与 ClickHouse 无缝对接
Flink ClickHouse 连接器为Apache Flink与高性能列式数据库ClickHouse提供了无缝集成,支持数据读写和Catalog管理。该连接器基于JDBC实现,提供灵活的配置选项,如批量大小、重试次数等。使用前需通过Maven安装依赖,支持丰富的Flink与ClickHouse数据类型映射。通过CREATE TABLE语句可注册ClickHouse表并进行SQL操作,还支持创建ClickHouseCatalog实现多库管理。项目具备开源特性,欢迎用户反馈和贡献代码。
2025-07-06 14:41:43
1009
原创 Hadoop MapReduce 入门
Hadoop 3.0.4 环境搭建与 MapReduce 开发指南 本文详细介绍了 Hadoop 3.0.4 单节点环境的安装配置步骤与 MapReduce 程序开发流程。主要内容包括:1) 环境准备:Java 8安装、Hadoop下载解压及环境变量配置;2) Hadoop核心配置:修改core-site.xml、hdfs-site.xml等配置文件;3) 服务启动:格式化HDFS并启动HDFS/YARN服务;4) MapReduce开发:使用Maven构建项目,配置Hadoop依赖,实现经典WordCou
2025-07-06 14:36:38
512
原创 ClickHouse 全生命周期性能优化
设计阶段:合理选择表引擎,优化分区/排序键设计,避免Nullable类型开发阶段:遵循SQL编写规范,优先使用分区过滤和PREWHERE,禁用SELECT *优化阶段:根据场景选择压缩算法,合理配置索引粒度,善用物化视图运维阶段:建立完善的监控体系,关注查询性能和合并状态,定期优化表结构安全阶段:实现分级权限控制,启用数据加密和操作审计,符合合规要求通过遵循上述全生命周期优化策略,可充分释放ClickHouse的性能潜力,构建高效、稳定的数据分析平台。
2025-07-06 14:21:51
1033
原创 MySQL查询优化全攻略:从基础到实战
MySQL查询性能优化需从索引设计、查询改写和执行计划分析入手,核心在于减少CPU与I/O开销。索引优化遵循最左前缀、覆盖索引等原则,避免函数操作导致失效。WHERE子句优化通过条件简化和范围查询改进。EXPLAIN分析执行计划,利用索引合并、哈希连接等高级技巧。关键参数调优包括ICP、MRR等机制,以及分页和GROUP BY优化。实战中应优先创建合适索引,简化查询条件,持续监控慢查询。不同业务场景需灵活选择优化策略,保持系统高效响应。
2025-07-04 13:53:07
620
原创 MySQL 锁机制深度解析:从分类到实战优化
特性InnoDBMyISAM默认锁类型行锁表锁事务支持支持不支持并发度高(行锁细粒度)低(表锁粗粒度)锁升级风险低(行锁为主)无(表锁固定)幻读解决方案间隙锁+MVCC(RR级别)需串行化级别InnoDB通过行锁和MVCC实现高并发,但需注意索引设计和事务管理;MyISAM表锁简单但并发能力有限,适用于读多写少场景。合理利用锁机制,能在数据一致性和系统性能间找到最佳平衡点。
2025-07-04 13:49:46
384
原创 Flink Vitess CDC 环境配置与验证
摘要:本文详细介绍了如何配置 Vitess 集群以支持 CDC(变更数据捕获)功能,并通过 Flink SQL 实现实时数据同步。核心内容包括: Vitess 配置:启用 VStream 服务(需设置 VTGate 的 gRPC 端口和心跳间隔),并验证 VStream 可用性。 Flink 集成:添加 Vitess CDC 连接器依赖,部署 SQL Client。 表定义与参数:重点解析 CDC 关键参数(如 port、tablet.type、snapshot.mode),提供完整的建表示例。 验证与监控
2025-07-04 13:44:57
668
原创 Flink TiDB CDC 环境配置与验证
TiDB与Flink CDC集成配置指南 本指南详细介绍了如何配置TiDB数据库与Flink CDC 3.0.1的连接集成。主要内容包括: TiDB核心配置:启用TiCDC服务并验证PD地址 Flink环境集成:添加Maven依赖和部署SQL Client Flink SQL表定义:提供完整建表示例和核心参数说明 环境验证:包括测试数据准备和Flink SQL验证步骤 关键配置要点: 必须配置正确的PD地址和数据库/表名称 支持两种启动模式:全量+增量或仅增量 提供GRPC超时和批量获取并发等优化参数 包含
2025-07-04 13:17:24
473
原创 Flink OceanBase CDC 环境配置与验证
摘要:本文详细介绍了OceanBase数据库与Flink的集成配置流程,包含三部分核心内容:1) OceanBase数据库配置,包括环境准备、用户权限设置、LogProxy服务部署;2) Flink环境集成,涉及Maven依赖添加和SQL Client部署;3) Flink SQL表定义与参数详解,提供MySQL和Oracle两种模式的建表示例及核心参数说明。重点涵盖社区版与企业版配置差异、元数据获取方式及CDC连接器关键参数,为实时数据同步提供完整解决方案。
2025-07-04 13:14:28
933
原创 Flink Db2 CDC 环境配置与验证
摘要:本文介绍了如何配置DB2数据库与Flink集成实现变更数据捕获(CDC)。首先在DB2中启用日志归档并创建CDC控制表,然后通过触发器捕获表变更。接着配置Flink环境添加DB2 CDC连接器依赖,详细说明SQL表定义参数。最后提供了完整的Flink SQL建表语句示例及参数说明,包括元数据列配置和核心参数详解。该方案可实现DB2数据库变更的实时捕获与处理。
2025-07-04 13:09:33
545
原创 Flink MongoDB CDC 环境配置与验证
摘要: 本文详细介绍了MongoDB CDC(变更数据捕获)的配置与Flink集成方法。首先说明MongoDB环境要求(版本≥3.6、副本集/分片集群、WiredTiger引擎),并给出集群验证命令。其次,通过SQL示例展示如何启用Change Streams、配置权限及PreAndPostImages(MongoDB 6.0+)。接着指导Flink环境部署,包括添加Maven依赖和SQL Client配置。核心部分提供了Flink SQL建表示例,支持嵌套文档、数组及元数据字段,并详解关键参数如连接器类型
2025-07-04 13:05:46
883
原创 Flink SQLServer CDC 环境配置与验证
SQL Server CDC 与 Flink 集成配置指南 本文详细介绍了如何将 SQL Server CDC 功能与 Apache Flink 集成,实现数据变更捕获和实时处理。主要内容包括: SQL Server 配置:启用数据库和表级 CDC,创建专用文件组,设置用户权限 Flink 环境准备:添加连接器依赖,部署 SQL Client Flink SQL 配置:表定义语法,核心参数详解(如增量快照、时区设置等) 4.验证测试步骤:测试数据准备,Flink SQL 查询验证,DataStream AP
2025-07-04 13:01:53
412
原创 Flink Postgres CDC 环境配置与验证
.flink.streaming.api.environment.StreamExecutionEnvironment; PostgresSource<String> source = PostgresSource.<String>builder() .hostname("192.168.1.100") .port(5432) .database("postgres") .schemaList("public") .tabl
2025-07-04 12:56:57
1016
原创 Flink Oracle CDC 环境配置与验证
摘要:Oracle CDC配置与Flink集成指南详解了数据库核心配置和Flink集成步骤。Oracle端需启用归档日志、补充日志并创建专用用户授权,包括CDB/非CDB环境差异配置。Flink环境需添加连接器依赖,通过SQL定义CDC表时需配置关键参数如scan.startup.mode和debezium.log.mining.strategy。完整流程涵盖从数据库准备到Flink表创建的实操细节,确保高效捕获Oracle数据变更。
2025-07-04 12:52:06
1020
原创 Flink MySQL CDC 环境配置与验证
MySQL与Flink CDC集成配置指南 本文详细介绍了MySQL服务器与Flink CDC的集成配置步骤: MySQL服务器配置: 启用二进制日志(Binlog)并设为ROW模式 创建专用用户并授权REPLICATION权限 配置唯一Server ID Flink环境准备: 添加Maven依赖或部署JAR包 配置checkpoint间隔 Flink CDC表定义: 提供完整建表示例 详解核心参数如connector、hostname、scan模式等 验证测试: 包括测试数据准备和集成验证 该配置可实现M
2025-07-04 12:45:49
759
原创 MySQL性能测试模板
目标:测试真实业务SQL的性能(如首页复杂查询、报表统计)。--mysql-password=你的密码 \--threads=20 \ # 模拟20个并发用户run环境一致:测试环境尽量贴近生产,避免“测试通过,上线翻车”;循序渐进:从简单场景(基准测试)到复杂场景(混合业务),逐步深入;指标量化:用数据说话,避免“感觉变快了”“好像不卡了”等模糊结论;持续优化:性能测试不是一次性任务,需定期执行(如每次大版本发布前)。性能测试的终极目标不是“测出高指标”,而是“保障业务稳定运行”。
2025-06-24 18:02:23
799
原创 Apache Flink Kafka 写连接器源码深度剖析
本文深入分析了Apache Flink Kafka写入连接器的源码实现。连接器核心组件包括KafkaSink(入口点)、KafkaWriter(消息写入)、KafkaSerializationSchema(序列化)和KafkaCommittableManager(事务管理)。KafkaSink采用构建器模式配置参数,KafkaWriter负责实际消息写入和事务处理。架构上支持多种语义保证,数据流从Flink处理到序列化再到Kafka写入,具备良好的扩展性和可靠性。
2025-06-24 12:47:03
428
原创 Apache Flink Kafka 读取连接器源码深度剖析
本文分析了Apache Flink Kafka读取连接器的核心架构与实现。该连接器采用Source-Split设计模式,主要包含KafkaSource、KafkaSourceReader、KafkaSourceEnumerator等核心组件,支持精确一次语义和动态分区发现。KafkaSource通过构建器模式配置参数,KafkaSourceReader继承自SingleThreadMultiplexSourceReaderBase,负责数据读取和偏移量管理,并在检查点时记录和提交偏移量。整体架构实现了Fli
2025-06-24 12:42:54
720
原创 精准把脉 MySQL 性能!xk6-sql 并发测试深度指南
摘要:本文详细介绍了xk6-sql工具在MySQL数据库性能测试中的应用,包括离线安装方法和并发测试实践。主要内容涵盖:1)xk6-sql的离线安装步骤,从环境准备到扩展集成;2)多种并发测试场景的实现,包括简单查询、参数化查询、事务处理、连接池性能和混合负载测试;3)各类测试脚本的编写要点和关键参数配置。通过具体案例展示了如何设置虚拟用户数、持续时间、阈值等性能指标,为数据库性能优化提供可靠测试方案。(149字)
2025-06-24 11:31:22
573
原创 Flink项目基础配置指南
在大数据处理领域,Apache Flink凭借强大的实时流处理和批处理能力,成为众多开发者的首选工具。在日常工作中,开发Flink Jar任务是常见需求,但每次都需重复配置日志、梳理pom依赖、设置打包插件等,流程繁琐且易出错。为提升开发效率,减少重复劳动,将这些基础配置进行整理归纳十分必要。本文将围绕Flink项目的本地日志配置、pom依赖及插件配置展开详细介绍,为开发者提供一套可直接复用的基础配置方案,助力Flink项目高效开发。在Flink项目中,日志是了解任务运行状态、排查问题的重要依据。本地日志配
2025-06-23 17:50:39
815
原创 Flink维表应用:从思考到实践的全面解析
Flink维表关联方案解析 本文深入探讨了Flink流处理中维表关联的三种实现方式及其适用场景: 实时Lookup数据库关联:包括同步、异步及带缓存三种模式,适用于流量较少或存在数据热点的场景,但存在数据库压力大或缓存一致性等问题。 预加载维表关联:将维表数据加载到内存中快速查询,适用于数据量小、更新少的场景,但扩展性差且内存消耗大。 维表变更日志关联:通过监听维表变更构建实时关联,适合数据量大、更新频繁的场景,实现复杂度较高。 文章详细分析了各类方案的优缺点,并提供了考量标准(如实现复杂度、吞吐量、数据延
2025-06-23 16:48:42
498
原创 Flink中的反压与背压:原理、检测与应对
Flink流处理系统中,反压与背压机制对保障系统稳定性至关重要。本文首先辨析二者概念,指出其本质均为处理数据生产与消费速度不匹配问题。随后剖析反压产生的三大根源:数据生成速度过高、操作符处理速度差异及系统资源不足。通过测试程序演示如何模拟反压场景,并介绍利用subtask状态和Buffer使用率等Metrics指标精准定位反压瓶颈的方法。最后强调开发者需掌握反压分析技术,优化系统配置,确保Flink在大数据场景下的高效稳定运行。文章为处理流计算性能问题提供了系统性解决方案。
2025-06-23 16:42:58
1058
原创 Flink SQL执行流程深度剖析:从SQL语句到分布式执行
Flink SQL执行流程解析 Flink SQL的执行流程分为两个核心阶段:首先通过TableEnvironment将SQL语句转换为Operation,随后将Operation转化为Transformation进行分布式执行。在第一阶段,INSERT INTO等SQL语句通过Calcite解析器完成词法语法分析,生成SqlNode并校验后转换为ModifyOperation。第二阶段根据Operation类型进行优化处理,如ModifyOperation会生成执行计划。整个过程基于Calcite实现语法
2025-06-23 13:37:46
1079
原创 从Calcite到Flink SQL:解析器的构建奥秘
Flink SQL借助Apache Calcite框架实现强大的SQL处理能力。Calcite作为动态数据管理框架,专注于SQL解析与优化,而将数据存储等功能交由第三方实现。其解析流程包括SQL词法语法校验和AST生成,通过JavaCC工具构建解析器。Flink SQL解析器初始化始于StreamTableEnvironmentImpl,通过PlannerFactoryUtil创建流式或批处理解析器,最终由CalciteParser完成SQL语句解析。这一设计使Flink SQL能高效处理流批数据,同时保持
2025-06-23 12:39:32
879
原创 探秘Flink维表:从源码到运行时的深度解析
本文深入探讨Flink在大数据实时处理中的维表关联实现原理。首先解析维表、流表和异步I/O等核心概念,指出维表关联在实时计算中的重要性。随后以JDBC维表为例,详细展示测试环境搭建过程,包括依赖配置和代码实现。通过Kafka数据源与MySQL维表的关联实践,揭示Flink维表JOIN的底层机制,特别分析了处理时间语义下维表快照关联的特性。文章为开发者提供了从理论到实践的完整指导,帮助理解流处理中维表关联的实现原理与优化方向。(150字)
2025-06-23 12:36:38
1023
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人