There are n employees in Alternative Cake Manufacturing (ACM). They are now voting on some very important question and the leading world media are trying to predict the outcome of the vote.
Each of the employees belongs to one of two fractions: depublicans or remocrats, and these two fractions have opposite opinions on what should be the outcome of the vote. The voting procedure is rather complicated:
- Each of n employees makes a statement. They make statements one by one starting from employees 1 and finishing with employee n. If at the moment when it's time for the i-th employee to make a statement he no longer has the right to vote, he just skips his turn (and no longer takes part in this voting).
- When employee makes a statement, he can do nothing or declare that one of the other employees no longer has a right to vote. It's allowed to deny from voting people who already made the statement or people who are only waiting to do so. If someone is denied from voting he no longer participates in the voting till the very end.
- When all employees are done with their statements, the procedure repeats: again, each employees starting from 1 and finishing with n who are still eligible to vote make their statements.
- The process repeats until there is only one employee eligible to vote remaining and he determines the outcome of the whole voting. Of course, he votes for the decision suitable for his fraction.
You know the order employees are going to vote and that they behave optimal (and they also know the order and who belongs to which fraction). Predict the outcome of the vote.
Input
The first line of the input contains a single integer n (1 ≤ n ≤ 200 000) — the number of employees.
The next line contains n characters. The i-th character is 'D' if the i-th employee is from depublicans fraction or 'R' if he is from remocrats.
Output
Print 'D' if the outcome of the vote will be suitable for depublicans and 'R' if remocrats will win.
Examples
Input
5 DDRRROutput
DInput
6 DDRRRROutput
R
提示:D方的人投票时可以选择什么都不做,或者投下R方的一个人, R方也是,所以直接选择贪心法,最大化,每次都投出一个人,用2个队列,一个储存D方,一个储存R方,每次队头比较,编号小的投掉另一方,使另一方出队,同时胜利的这个对头也要出队,再进队,排到队尾
#include<iostream>
#include<queue>
using namespace std;
int main()
{
int n,i;
char x;
queue<int> D, R;
cin >> n;
for(i=1;i<=n;i++) {
cin >> x;
if (x == 'D') {
D.push(i);
}
else {
R.push(i);
}
}
while (!D.empty() && !R.empty()) {
if (D.front() < R.front()) {
R.pop(); //如果D的编号在R的前面,D可以把R的第一个投出去
D.push(D.front()+n); //放到队尾时,应+n,表面它轮过了一轮
D.pop(); //进队使它到队尾,第一个出队,先出队会找不到它
}
else {
D.pop();
R.push(R.front()+n);
R.pop();
}
}
if (D.empty()) {
cout << "R";
}
else {
cout << "D";
}
return 0;
}