代码随想录算法训练营第四十五天 | 70. 爬楼梯 (进阶),322. 零钱兑换,279.完全平方数
1.1 70. 爬楼梯 (进阶)
思路:
- 完全背包问题
- dp[i]:爬到有i个台阶的楼顶,有dp[i]种方法
dp[i] += dp[i - j]
- 求排列问题
class Solution {
public:
int climbStairs(int n) {
vector<int> dp(n + 1, 0);
dp[0] = 1;
for (int i = 1; i <= n; i++) { // 遍历背包
for (int j = 1; j <= m; j++) { // 遍历物品
if (i - j >= 0) dp[i] += dp[i - j];
}
}
return dp[n];
}
};
- 时间复杂度: O(nm)
- 空间复杂度: O(n)
1.2 322. 零钱兑换
思路:
- 完全背包问题
- dp[j]:凑足总额为j所需钱币的最少个数为dp[j]
dp[j] = min(dp[j - coins[i]] + 1, dp[j])
- 钱币有顺序和没有顺序都可以,都不影响钱币的最小个数
/ 版本一
class Solution {
public:
int coinChange(vector<int>& coins, int amount) {
vector<int> dp(amount + 1, INT_MAX);
dp[0] = 0;
for (int i = 0; i < coins.size(); i++) { // 遍历物品
for (int j = coins[i]; j <= amount; j++) { // 遍历背包
if (dp[j - coins[i]] != INT_MAX) { // 如果dp[j - coins[i]]是初始值则跳过
dp[j] = min(dp[j - coins[i]] + 1, dp[j]);
}
}
}
if (dp[amount] == INT_MAX) return -1;
return dp[amount];
}
};
- 时间复杂度: O(n * amount),其中 n 为 coins 的长度
- 空间复杂度: O(amount)
1.3 279.完全平方数
思路:
- 完全平方数就是物品(可以无限件使用),凑个正整数n就是背包,问凑满这个背包最少有多少物品
- dp[j]:和为j的完全平方数的最少数量为dp[j]
dp[j] = min(dp[j - i * i] + 1, dp[j])
- 每次dp[j]都要选最小的,所以非0下标的dp[j]一定要初始为最大值,这样dp[j]在递推的时候才不会被初始值覆盖
// 版本一
class Solution {
public:
int numSquares(int n) {
vector<int> dp(n + 1, INT_MAX);
dp[0] = 0;
for (int i = 0; i <= n; i++) { // 遍历背包
for (int j = 1; j * j <= i; j++) { // 遍历物品
dp[i] = min(dp[i - j * j] + 1, dp[i]);
}
}
return dp[n];
}
};
- 时间复杂度: O(n * √n)
- 空间复杂度: O(n)