msyql基础 - 聚合函数和分组函数

聚合函数又称组函数。默认情况下,聚合函数会对当前所在表当做一个组进行统计。

(注意:是把一个表当做一个组去处理,与group by类似)。

常见聚合函数:

以下五个常见分组函数都会默认把null给过滤掉,所以当使用分组函数时,你不需要考虑过滤掉null。

以user表为例:

1、count ( ) : 求数据表的行数(只针对非空字段!)。

结果如下:

补充:

count(*)  查询结果集的行数

 

2、max ( ) :  求某列的最大值

注意:如果有多个最大值,只能返回一个。

结果如下:

 

3、min( ) :  求某列的最小值 (也是只能返回一个最小值)

结果如下:

 

4、sum( ) :  对数据表求和,也可以加上筛选条件

结果如下:

 

5、avg( ) :  对表进行平均值操作。

结果如下:

 

6、分组函数合一搭配distinct关键字,来达到去重统计

select count(distinct ( )) from  表;

7、补充:

count(*) 和count(字段名) 的区别:

count(*) 是查询数据的总条数;而count(字段名) 统计的时某个字段,如果某一条的字段为null,会被过滤掉。

 

分组查询 - group  by

以下边user表为例:

1、基本使用:

语法(注意书写顺序)

select  查询字段,分组字段 from  表

where 查询之前的筛选条件 (注意:这个是在原始表中筛选)

group by 分组列表(这个分组列表可以为单个字段,也可以为多个字段,中间以逗号隔开)

having  分组后的筛选条件  (注意:这个是在基于筛选后的表,也就是group by后边的结果集进行筛选,与where筛选有区别!!!)

order by  排序列表

刚接触数据库,用group by感觉很不习惯,总感觉这东西好难理解,这里就当学习笔记先记录下,以后结合项目用熟练了在回来补充:

group by 意思为分组,group by后边跟着的是以哪个字段分组,语法为:

比如,以部门分组:

select department from user group by department

问题来了,它到底能干什么呢?

比如,现在有一个页面要统计 上边user表中每个部门员工的总人数,我想这样的需求很常见,你不可能原封不动的把数据都查出来,然后返给前端,这样不太讲码德!最终要返回的数据应该是下边这样的:

[{ department: '开发部', staff_count: 4 }, { department: '市场部', staff_count: 3 }, { department: '行政部', staff_count: 3 }]

那么此时,group by就用上了,我们需要以部门department字段分组:

select department, count(*) staff_count from user group by department

执行顺序应该为:先从user表中把数据查出来 -> 然后再根据department进行分组 ->  分完组之后,然后再计算每一组的总数。

结果如下:

规律:

一般需要使用group by来分组的字段,有相同的特点:

(1)字段中的值,有一些重复的,比如:上边的部门。

(2)类型都是同一类型的,这句话等于废话,因为都是同一列的值,这里只是总结下。

(3)这个字段通常会与多条数据有关联,比如部门会包含多个

2、group_count( )

分组完之后,现在又加了一个需求,需要把每个部门的员工姓名查询出来,此时我们需要对分组后的结果进行查询,那么可以使用关键字:group_concat ( )

select department, group_concat(name) names, count(*) staff_count from user group by department

结果如下:

3、group by  + 聚合函数 一起使用

还是以user表为例:

(1)按照部门分组,查询每个部门员工的姓名及薪水、薪水总数

select department, group_concat(name, '-', salary) staff_salary, sum(salary) sum_salary from user group by department

结果如下:

(2)查询每个部门的名称和每个部门的人数

select department, count(*) staff_counts from user group by department

结果如下:

(3)查询每个部门的部门名称以及每个部门工资大于8000的人数和大于8000的员工姓名

补充:使用where会先把工资大于8000的筛选出来,然后在进行分组;而如果使用having的话,它会把数据全部查询出来,然后进行分组,最后在把大于8000的数据给过滤掉,这样可想而知,效率很慢。

结果如下:

(3.1)如果我们把上边的题目改下,查询每个部门名称以及每个部门的平均工资大于8000的人数

这个题就不能先用where过滤了,因为统计的是每个部门的平均工资大于8000的,根据平均工资来计算,而where后边不能加分组函数,所以,此题只能用having来统计:

select deparment count(*) stuff_count from user group by department having avg(salary) > 8000;

 

4、group by  + having

· having的作用:分组查询后,制定一些条件来输出查询结果(这块有个补充,能在where过滤掉的就先使用where进行过滤,然后在分组,这样效率较高一些)。

· having的作用和where一样,但是having只能用于group by。

例:

(1)查询工资总和大于22000的部门以及工资和

结果如下:

having和where的区别:

· hanving是在分组后对数据进行过滤的。

· where是在分组前对数据进行过滤的。

· hanving在 后边可以使用分组函数(统计函数)

· where后边不可以使用分组函数

· where 是对分组前去约束的条件,如果某行记录没有满足where子句的约束条件,那么这行记录不会参加分组;而hanving是对分组后的数据进行约束。

 

书写顺序:

select -> from -> where -> grou by -> order by -> limit 

 

limit的使用:

limit很简单,是对查询的条数进行限制,语法为:

select * from user limit 0, 5

参数一:从哪一行开始查(起始条目)。

参数二:一共查几行(条目数)。

起始条目索引是从0开始的,0代表第一行,如果不写就是从0开始显示,所以,当我们要查询:从a开始,到b结束的数据如下:

select * from *  表 limit a-1, b-(a-1);

取前5条数据,结果如下:

下边写法等同于:select * from user limit 5;

** 一个平时开发必用的分页查询 **

前端通常会传给后台currentPage - 当前页码pageSize - 当前页显示的条数,下边是如何查询的一个小小技巧,

假如一个只显示10条数据,当前从哪一条开始查询的算法:

-- 当前为第一页, 查询应该 0行 - 10行数据, 算法为-> (1-1) * 10 = 0;最前边的1为当前的页数,后边的10为显示的条数。  

-- 当前为第二页, 查询应该 10行 - 20行数据, 算法为-> (2-1) * 10 = 10;参数同上。

-- 当前为第一页, 查询应该 20行 - 30行数据, 算法为-> (3-1) * 10 = 20;参数同上。

sql语句为:

select * from user limit (currentPage - 1) * pageSize 

当然limit后边不能有表达式,我这只是把这种规律写出来,看起来更加明白一些,currentPage和pageSize都是动态的,通常在后台语言中会先计算出来赋值给一个变量,然后把变量拼接到sql语句中。

下边是我用node拼的sql示例:

app.use((ctx, next) => {
    let {currentPage, pageSize} = ctx.query // 获取参数中的页码和数量
    query(currentPage, pageSize)
    next()
})
function query(currentPage=1, pageSize=2) {
    currentPage = (currentPage -1)*pageSize
    // 分页查询
    const pageBreak = `select * from study1 limit ${currentPage},${pageSize}`
}

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值