time.time()
不适用于精度过高的计时。适用于表示日期时间或者对于精度要求不高的计时。
import time
T1 = time.time()
#待计算的代码块
print('hello world')
T2 = time.time()
print('程序运行时间:%s毫秒' % ((T2 - T1)*1000))
time.clock()
time.clock() 函数以浮点数计算的秒数返回当前的CPU时间。用来衡量不同程序的耗时,比time.time()更有用。(不同系统上,含义不同)、
不推荐使用
time.perf_counter()
python3.3之后出的,返回性能计数器的值
一般来说, 使用 time.time() 或 time.clock() 计算的时间精度因操作系统的不同会有所不同。 而使用 time.perf_counter() 函数可以确保使用系统上面最精确的计时器。但这种方法不适用于具有大量函数调用的程序。
time.process_time()
代码中由 Timer 类记录的时间是钟表时间,并包含了所有休眠时间。 如果只想计算该进程所花费的CPU时间,应该使用 time.process_time() 来代替。
上述四个方法的共同点:单个函数的返回值无意义,只有多次运行取差值的结果才是有效的函数执行时间。 time.perf_counter() 函数会在给定平台上获取最高精度的计时值。 不过,它仍然还是基于时钟时间,很多因素会影响到它的精确度,比如机器负载。 如果对于执行时间更感兴趣,可以用 time.process_time() 来代替它。
python3.7引入了thread_time(),以及monotonic(),perf_counter(),process_time(),time()的纳秒版本,以_ns后缀命名。例如,perf_counter_ns()是perf_counter()的纳秒版本的。
time.timeit()
timeit()函数中的参数:
stmt 参数是需要执行的语句,默认为 pass
setup 参数是用来执行初始化代码或构建环境的语句,默认为 pass
timer 是计时器,默认是 perf_counter()
number 是执行次数,默认为一百万
globals 用来指定要运行代码的命名空间,默认为 None
repeat指定重复的次数
import timeit
def func():
print('hello world')
print(f'耗时: {timeit.timeit(stmt=func, number=1)}')
hello world
耗时: 1.3100000000000264e-05
cProfile性能分析工具
cProfile(语言编写的测试模块)是一个标准库内建的性能分析工具,可以在标准输出中看到每一个函数被调用的次数和运行的时间,从而找到程序的性能瓶颈,从而有针对性的进行性能优化。默认计时器: time.process_time()
pycharm中的Profile工具。
import cProfile
def func(a):
print('hello world')
if __name__ == '__main__':
cProfile.run("func(10000000)")
with语句统计
with语句不仅可以统计代码块的执行时间,也可以统计函数的执行时间,还可以统计多个函数的执行时间之和,相比装饰器来说对代码的入侵性比较大,不易于修改,好处是使用起来比较灵活,不用写过多的重复代码。
import asyncio
import time
class CoastTime(object):
def __init__(self):
self.t = 0
def __enter__(self):
self.t = time.perf_counter()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
print(f'耗时:{time.perf_counter() - self.t:.8f} s')
def test():
print('hello test')
with CoastTime():
time.sleep(1)
async def test_async():
print('hello test_async')
with CoastTime():
await asyncio.sleep(1)
if __name__ == '__main__':
test()
asyncio.get_event_loop().run_until_complete(test_async())
装饰器统计
使用装饰器来统计函数执行耗时的好处是对函数的入侵性小,易于编写和修改。装饰器装饰函数的方案只适用于统计函数的运行耗时,如果有代码块耗时统计的需求就不能用了,这种情况下可以使用 with 语句自动管理上下文。
(1)同步函数的统计
import time
def coast_time(func):
def fun(*args, **kwargs):
t = time.perf_counter()
result = func(*args, **kwargs)
print(f'函数:{func.__name__} 耗时:{time.perf_counter() - t:.8f} s')
return result
return fun
@coast_time
def test():
print('hello world')
if __name__ == '__main__':
test()
(2)异步函数的统计
import asyncio
import time
from asyncio.coroutines import iscoroutinefunction
def coast_time(func):
def fun(*args, **kwargs):
t = time.perf_counter()
result = func(*args, **kwargs)
print(f'函数:{func.__name__} 耗时:{time.perf_counter() - t:.8f} s')
return result
async def func_async(*args, **kwargs):
t = time.perf_counter()
result = await func(*args, **kwargs)
print(f'函数:{func.__name__} 耗时:{time.perf_counter() - t:.8f} s')
return result
if iscoroutinefunction(func):
return func_async
else:
return fun
@coast_time
def test():
print('hello test')
time.sleep(1)
@coast_time
async def test_async():
print('hello test_async')
await asyncio.sleep(1)
if __name__ == '__main__':
test()
asyncio.get_event_loop().run_until_complete(test_async())
PyCharm中的Profile
从Run中点击Profile,即可对当前python脚本进行性能分析。