论文投稿时,期刊编排要求将多张图片整合成一块,且格式为jig格式;dpi值为300等诸如此类。此时,用origin怎么做呢?接下来为大家讲解:利用origin将多张图片合并、排列并导出的方法。

  1. 打开origin,点击New Graph选项(如上图红色方框选中的图案)后,弹出一张页面,将页面坐标和文字选中并delete,余一张空白页面。

    origin如何将多张图片合并、排列并导出?

    origin如何将多张图片合并、排列并导出?

  2. 打开要组合的origin图片,点击Edit-Copy Page选项复制黏贴图片到上张空白页面。

    origin如何将多张图片合并、排列并导出?

  3. 鼠标移到图片处,右击并选中properties选项。在弹出的对话框中勾选keep aspect ratio,并在Size选项中调节图片宽度和高度。

    origin如何将多张图片合并、排列并导出?

    origin如何将多张图片合并、排列并导出?

  4. 将其余需组合的图片按照2-3的步骤处理后,将图片排列整齐,在工具栏选中TEXT格式给图片编号,如1,2,3或a,b,c。

    origin如何将多张图片合并、排列并导出?

  5. 在菜单栏里选中File-Export Graphs选项,弹出导出图片格式对话框。按要求输入图片格式,DPI并保存地址。

    origin如何将多张图片合并、排列并导出?

    origin如何将多张图片合并、排列并导出?

  6. 最后,多张图片就合并在一块了,且按照期刊要求格式导出图片啦。

    origin如何将多张图片合并、排列并导出?

传统的多帧图像超分辨率重建算法主要采用了一些手工设定的方式来实现。其中一种常见的方法是基于近邻搜索或近邻插的方式进行重建。这种方法对低分辨率图像中的每个像素进行处理,但由于只考虑了局部信息,难以恢复出低分辨率图像原本的细节信息,效果不好。\[1\] 另一种传统方法是基于学习的方法,通过大量的训练数据学习低分辨率图像和高分辨率图像之间的对应关系,然后根据学习到的映射关系来预测低分辨率图像所对应的高分辨率图像,从而实现图像的超分辨率重建过程。这种方法包括流形学习和稀疏编码等技术。\[2\] 然而,传统的多帧图像超分辨率重建算法在效果上有一定的局限性,无法充分利用图像中的细节信息。近年来,基于深度学习的超分辨率重建算法得到了广泛的研究和应用。这些算法通过深度神经网络模型,能够学习到更复杂的图像特征和映射关系,从而实现更准确和真实的超分辨率重建效果。\[3\] #### 引用[.reference_title] - *1* *2* *3* [一文掌握图像超分辨率重建(算法原理、Pytorch实现)——含完整代码和数据](https://blog.csdn.net/qianbin3200896/article/details/104181552)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值