【2025 Stable Diffusion WebUI 基础详解】【4.Stable Diffusion img2img的绘图流程】

在这里插入图片描述

一、img2img核心机制与技术架构

1.1 扩散模型的双向流动

Stable Diffusion的img2img模块基于潜在扩散模型(Latent Diffusion Model)构建,其核心逻辑是将输入图像编码为潜空间特征,再通过逆向扩散过程生成新图像。这一过程可分为三个阶段:

  1. 正向扩散:将输入图像通过VAE编码器压缩为4×4的潜空间特征(Latent Space),并叠加高斯噪声。噪声强度由Denoising strength参数控制,该参数决定了图像的破坏程度。
  2. 逆向去噪:UNet网络在文本提示的引导下,逐步去除噪声。这一过程通过Sampling steps参数控制迭代次数,通常设置为20-50步。
  3. 特征解码:VAE解码器将去噪后的潜空间特征还原为像素级图像,最终输出结果。

1.2 图像条件注入技术

img2i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

再见孙悟空_

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值