P96 96_堆_堆的概述、插入删除、堆排序
区别:
查找树,父节点比左子结点要大,父节点比右子结点要小
提供比较规则。
因为堆中,每一个结点都大于等于它的两个结点。
插入
索引0处,我们是不用的。
子节点和父节点比较。直到父节点比子节点要大。
删除
package heap;
public class Heap<T extends Comparable<T>> {
//存储堆中的元素
private T[] items;
//记录堆中元素的个数
private int N;
public Heap(int capacity) {//容量,假如说传进来的是2,只有0和1,0不使用
this.items= (T[]) new Comparable[capacity+1];
this.N=0;
}
//判断堆中索引i处的元素是否小于索引j处的元素
private boolean less(int i,int j){
return items[i].compareTo(items[j])<0;
}
//交换堆中i索引和j索引处的值
private void exch(int i,int j){
T temp = items[i];
items[i] = items[j];
items[j] = temp;
}
//往堆中插入一个元素
public void insert(T t){
items[++N]=t;//N一开始等于0,堆中,0索引是不使用的,所以++N,而不是N++
swim(N);
}
//使用上浮算法,使索引k处的元素能在堆中处于一个正确的位置
//为什么叫上浮算法,因为我们插入元素的时候,都是在后面。通过上浮不断调整自己的位置。
private void swim(int k){
//通过循环,不断的比较当前结点的值和其父结点的值,如果发现父结点的值比当前结点的值小,则交换位置
while(k>1){//根节点为k=1,k>1,说明k最小可以取到2。
//比较其父结点k/2和当前结点k
//如果发现父结点的值比当前结点的值小,则交换位置
if (less(k/2,k)){//k=2/2=1,把第一个节点和另一个进行比较。
exch(k/2,k);
}
k = k/2;
}
}
//删除堆中最大的元素,并返回这个最大元素
public T delMax(){
T max = items[1];
//交换索引1处的元素和最大索引处的元素,让完全二叉树中最右侧的元素变为临时根结点
exch(1,N);
//最大索引处的元素删除掉
items[N]=null;
//元素个数-1
N--;
//通过下沉调整堆,让堆重新有序
sink(1);
return max;
}
//使用下沉算法,使索引k处的元素能在堆中处于一个正确的位置
private void sink(int k){
//通过循环不断的对比当前k结点和其左子结点2*k以及右子结点2k+1处中的较大值的元素大小,如果当前结点小,则需要交换位置
while(2*k<=N){//没有子节点,不需要比。所以至少需要一个左子节点2k。这里是下沉,要保证下沉,所以至少需要一个左子节点2k。2k<=N
//获取当前结点的子结点中的较大结点
int max;//记录较大结点所在的索引
if (2*k+1<=N){//如果有右子节点
if (less(2*k,2*k+1)){//比较左子结点和右子节点。
max=2*k+1;
}else{
max=2*k;
}
}else {
max = 2*k;
}
//比较当前结点和较大结点的值
if (!less(k,max)){//如果k大于max,!0=1,停止循环
break;
}
//如果k小于max
//交换k索引处的值和max索引处的值
exch(k,max);
//变换k的值,为下一次循环
k = max;
}
}
public static void main(String[] args) {
Heap<String> heap = new Heap<String>(20);
heap.insert("A");
heap.insert("B");
heap.insert("C");
heap.insert("D");
heap.insert("E");
heap.insert("F");
heap.insert("G");
String del;
while((del=heap.delMax())!=null){
System.out.print(del+",");
}
}
}
package test;
import heap.Heap;
public class HeapTest {
public static void main(String[] args) {
//创建堆对象
Heap<String> heap = new Heap<>(10);
//往堆中存入字符串数据
heap.insert("A");
heap.insert("B");
heap.insert("C");
heap.insert("D");
heap.insert("E");
heap.insert("F");
heap.insert("G");
//通过循环从堆中删除数据
String result = null;
while((result = heap.delMax())!=null){
System.out.print(result+" ");
}
}
}
P101 101_堆_堆排序
把数组先复制到堆中。
数组是从0开始的。
堆是从1开始的。
复制到堆中之后,一开始堆是没有顺序的。
为什么?
再从新数组长度的一半处开始往1索引处扫描(从右往左),然后
对扫描到的每一个元素做下沉调整即可。
因为一半处,上面一半是父节点
下面一半是叶子节点。
我们从右往左就是那节点和父节点比较。
大的上浮,小的下沉。
总之,从一半处扫描,性能提高。
src:要复制的数组(源数组)
srcPos:复制源数组的起始位置
dest:目标数组
destPos:目标数组的下标位置
length:要复制的长度
构建堆后,堆有序之后,是从大到小的。如何从小到大排序呢?
我们把最大的元素,也就是堆顶元素和最后一个交换。
此时最后一个就是最大的元素。(正好也是数组最后一个索引处,对应最大元素,嘻嘻!)
最后一个元素不使用,N–。
剩下的元素重新找到最大元素放在堆顶。
然后再和最后一个交换,不使用,N–。重复这样的过程。
代码
package heap;
public class HeapSort {
//判断heap堆中索引i处的元素是否小于索引j处的元素
private static boolean less(Comparable[] heap, int i, int j) {
return heap[i].compareTo(heap[j])<0;
}
//交换heap堆中i索引和j索引处的值
private static void exch(Comparable[] heap, int i, int j) {
Comparable tmp = heap[i];
heap[i] = heap[j];
heap[j] = tmp;
}
//根据原数组source,构造出堆heap
private static void createHeap(Comparable[] source, Comparable[] heap) {
//把source中的元素拷贝到heap中,heap中的元素就形成一个无序的堆
System.arraycopy(source,0,heap,1,source.length);
//对堆中的元素做下沉调整(从长度的一半处开始,往索引1处扫描)
for (int i = (heap.length)/2;i>0;i--){
sink(heap,i,heap.length-1);//因为现在是在构造堆,所以是在整个范围内调整,这里填写heap.length-1
}
}
//对source数组中的数据从小到大排序
//从小到大,没看懂。
//堆不是从大到小的吗?使用sink下沉,如何保证从小到大?
public static void sort(Comparable[] source) {
//构建堆
Comparable[] heap = new Comparable[source.length+1];//heap数组0索引废弃
createHeap(source,heap);
//定义一个变量,记录未排序的元素中最大的索引
int N = heap.length-1;
//通过循环,交换1索引处的元素和排序的元素中最大的索引处的元素
while(N!=1){
//交换元素
exch(heap,1,N);
//排序交换后最大元素所在的索引,让它不要参与堆的下沉调整
N--;
//需要对索引1处的元素进行对的下沉调整
sink(heap,1, N);
}
//把heap中的数据复制到原数组source中
System.arraycopy(heap,1,source,0,source.length);
}
//在heap堆中,对target处的元素做下沉,范围是0~range
//为什么0~range?
//之前视频说,可以让某一部分及其之前的,可以参与下沉,这个range就是规定了,那一部分
private static void sink(Comparable[] heap, int target, int range){
while(2*target<=range){
//1.找出当前结点的较大的子结点
int max;
if (2*target+1<=range){//之前视频说,可以让某一部分及其之前的,可以参与下沉,这个range就是规定了,那一部分,所以是<=range
if (less(heap,2*target,2*target+1)){
max = 2*target+1;
}else{
max = 2*target;
}
}else{//如果右子节点都没有,则直接记录左子节点
max = 2*target;
}
//2.
//比较当前结点和子节点中较大结点的值
//如果当前结点和子节点中较大结点的值,还要大,那就没必要比较了
if (!less(heap,target,max)){
break;
}
exch(heap,target,max);
target = max;
}
}
}
package test;
import heap.HeapSort;
import java.util.Arrays;
public class HeapSortTest {
public static void main(String[] args) {
//待排序数组
String[] arr = {"S","O","R","T","E","X","A","M","P","L","E"};
//通过HeapSort对数组中的元素进行排序
HeapSort.sort(arr);
//打印排序后数组中的元素
System.out.println(Arrays.toString(arr));
}
}