numpy学习--索引

一维数组索引访问

ndarray[0轴索引][1轴索引]

ndarray[0轴索引,1轴索引]

一维数组切片访问

ndarray[start:end]

ndarray[start:end:step]

注:切片start位置元素,但不包括end位置元素

二维数组切片访问

ndarray[所在0轴切片,所在1轴切片]

import numpy as np
#二维数组
b = np.array([[1,2,3],
             [4,5,6],
             [7,8,9]])
print(b[0:2,1:2].shape)
print(b[:2,1:])
#变为一维数组
print(b[1:,1].shape)


(2, 1)
[[2 3]
 [5 6]]
(2,)

布尔索引结果为一维数组

 

花式索引

a = np.array([1,2,3,4,5,6])

b = [1,2,3,4]
print(a[b])

#二维数组的花式索引
a2= np.array([[1,2,3],
               [4,5,6],
               [7,8,9]])
m = [1,2]
n = [0,1]
print(a2[m,n])



[2 3 4 5]
[4 8]

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值