一般ACM或者笔试题的时间限制是 1 1 1 秒或 2 2 2 秒。
在这种情况下,C++代码中的操作次数控制在 1 0 7 ∼ 1 0 8 10^7 \sim 10^8 107∼108 为最佳。
下面给出在不同数据范围下,代码的时间复杂度和算法该如何选择:
-
n ≤ 30 n \leq 30 n≤30:指数级别,dfs+剪枝,状态压缩dp
-
n ≤ 100 n \leq 100 n≤100: O ( n 3 ) O(n^3) O(n3),floyd,dp,高斯消元
-
n ≤ 1000 n \leq 1000 n≤1000: O ( n 2 ) O(n^2) O(n2), O ( n 2 log n ) O(n^2 \log n) O(n2logn),dp,二分,朴素版Dijkstra,朴素版Prim,Bellman-Ford
-
n ≤ 10000 n \leq 10000 n≤10000: O ( n ∗ n ) O(n * \sqrt{n}) O(n∗n),块状链表,分块,莫队
-
n ≤ 100000 n \leq 100000 n≤100000: O ( n log n ) O(n \log n) O(nlogn),各种sort,线段树,树状数组,set,map,heap,拓扑排序,dijkstra+heap,prim+heap,kruskal,spfa,求凸包,求半平面交,二分,CDQ分治,整体二分,后缀数组,树链剖分,动态树
-
n ≤ 1000000 n \leq 1000000 n≤1000000: O ( n ) O(n) O(n),常数较小的 O ( n log n ) O(n \log n) O(nlogn),单调队列,hash,双指针扫描,并查集,kmp,AC自动机,sort,树状数组,heap,dijkstra,spfa
-
n ≤ 10000000 n \leq 10000000 n≤10000000: O ( n ) O(n) O(n),双指针扫描,kmp,AC自动机,线性筛素数
-
n ≤ 1 0 9 n \leq 10^9 n≤109: O ( n ) O(\sqrt{n}) O(n),判断质数
-
n ≤ 1 0 18 n \leq 10^{18} n≤1018: O ( log n ) O(\log n) O(logn),最大公约数,快速幂,数位DP
-
n ≤ 1 0 1000 n \leq 10^{1000} n≤101000: O ( ( log n ) 2 ) O((\log n)^2) O((logn)2),高精度加减乘除
-
n ≤ 1 0 100000 n \leq 10^{100000} n≤10100000: O ( log k × log log k ) O(\log k \times \log \log k) O(logk×loglogk), k k k表示位数,高精度加减,FFT/NTT