MMSegmentation(OpenMMLab AI实战营笔记8)

MMSegmentation是基于PyTorch的图像分割库,包含多种算法如FCN、UNet、DeepLab系列,提供预训练模型和数据处理工具。它支持多卡训练,适应大规模任务。文章讨论了FCN的上采样方法、UNet的特征融合、DeepLab的空洞卷积以及Transformer在分割任务中的应用。
摘要由CSDN通过智能技术生成

这节课是关于Segmentation算法的分享

MMSegmentation库简介

  • 算法简介
    MMSegmentation是一个基于PyTorch深度学习框架实现的图像分割工具包。它包含了多种经典和先进的图像分割算法,如FCN、UNet、DeepLabv3等,并提供了预训练模型和训练/测试代码,方便用户快速进行图像分割任务的实验和应用。
    MMSegmentation还提供了丰富的数据增强和数据集处理工具,支持常见的数据集格式,如Pascal VOC、COCO、ADE20K等。此外,MMSegmentation还支持多卡并行训练和分布式训练,可以应对大规模数据集和复杂模型的训练需求。
    在这里插入图片描述
  • 支持算法库
    在这里插入图片描述

语义分割pipeline

  • 逐像素分割
    在这里插入图片描述
  • 全连接层的使用
    在这里插入图片描述

经典论文分享

  • FCN
    在这里插入图片描述
    这篇文章是使用卷积神经网络提取特征之后,使用上采样方法进行还原。
    上采样的方式有两种,分别是双线性插值和转置卷积。它们的区别是双线性插值是不可学习的,而转置卷积可以学习。
    在这里插入图片描述
    在这里插入图片描述

  • UNet
    在这里插入图片描述
    UNet是一种在不同特征维度进行融合的方式,因为不同维度的特征融合之后再进行分割会得到更好的效果。

  • PSPNet
    在这里插入图片描述
    和UNet相比,它的特征融合方式不同。

  • DeepLab {V1, V2, V3, V3+}
    空洞卷积
    在这里插入图片描述
    模型
    在这里插入图片描述
    能看到在DeepLab中使用了多次空洞卷积。

Transformer分割方法速览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值