这节课是关于Segmentation算法的分享
MMSegmentation库简介
- 算法简介
MMSegmentation是一个基于PyTorch深度学习框架实现的图像分割工具包。它包含了多种经典和先进的图像分割算法,如FCN、UNet、DeepLabv3等,并提供了预训练模型和训练/测试代码,方便用户快速进行图像分割任务的实验和应用。
MMSegmentation还提供了丰富的数据增强和数据集处理工具,支持常见的数据集格式,如Pascal VOC、COCO、ADE20K等。此外,MMSegmentation还支持多卡并行训练和分布式训练,可以应对大规模数据集和复杂模型的训练需求。
- 支持算法库
语义分割pipeline
- 逐像素分割
- 全连接层的使用
经典论文分享
-
FCN
这篇文章是使用卷积神经网络提取特征之后,使用上采样方法进行还原。
上采样的方式有两种,分别是双线性插值和转置卷积。它们的区别是双线性插值是不可学习的,而转置卷积可以学习。
-
UNet
UNet是一种在不同特征维度进行融合的方式,因为不同维度的特征融合之后再进行分割会得到更好的效果。 -
PSPNet
和UNet相比,它的特征融合方式不同。 -
DeepLab {V1, V2, V3, V3+}
空洞卷积
模型
能看到在DeepLab中使用了多次空洞卷积。
Transformer分割方法速览