java实现斐波那契数列的三种方法

Java实现斐波那契数列的三种方法

什么是斐波那契数列

  • 这里借用一下度娘的一段话:斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……
    其规律很明显,从第3个数开始,每个数都等于它前两个数的和。
    那么通过java可以如何实现斐波那契数列呢?这里介绍三种方法。

1.通过递归实现
通过代码实现以下效果:当你输入n时,会获取斐波那契数列的第n个数的值。

public static int fibonacci(int n){

        if (n == 1 || n == 2) {             //特殊情况,分开讨论
            return 1;
        }
        if (n > 2) {
            return fibonacci(n - 1) + fibonacci(n - 2);     //递归调用
        }
        return -1;              //如果输入错误的n,一律返回-1
    }

这种实现方法最简单,也是很容易就能想到的。但是效率太低了,当n>=40时,你会发现计算时间明显变长,当n接近50时,idea运行窗口等了半天才反应过来。
注意:由于int的取值范围有限,最大值为 (2^32)-1 = 2147483647,当n>46的时候,会发生取值范围溢出的情况,所以这里如果想要验证n>46时的计算耗时情况,请将返回值类型int改为long。 例如第2种方法。就将int改为了long。

2.通过for循环的方式实现

public static long fibonacci2(int n) {
        if (n < 1) {
            return -1;
        }
        if (n ==1 || n == 2) {
            return 1;
        }

        long a =1l, b= 1l, c =0l;		//定义三个long类型整数
        for (int i = 0; i < n - 2; i++) {
            c = a + b;			//第3个数的值等于前两个数的和
            a = b;			//第2个数的值赋值给第1个数
            b = c;			//第3个数的值赋值给第2个数
        }
        return c;
    }

这种方法相比第1中,明显计算速度提高了不是一点两点,哪怕n>10000,都能瞬间完成计算。

3.通过for循环和数组的方式实现
这种实现方式,其实和第2种实现方式类似,只不过把数据都放到了数组里,可以取出斐波那契数列的第1个一直到第n个的数值。
同样,这里采用了long类型,防止溢出。

public static long fibonacci3(int n) {
        if (n < 1) {
            return -1;
        }
        if (n == 1 || n == 2) {
            return 1;
        }

        long[] arr = new long[n];
        arr[0] = arr[1] = 1;		//第一个和第二个数据特殊处理
        for (int i = 2; i < n; i++) {		
            arr[i] = arr[i -2] + arr[i - 1];
            arr[n -1] = arr[i];		//数列第n个数  对应数组arr[n - 1]  因为数组下标是从0开始的
        }

       /* for (int a : arr) {
            System.out.println(a);    //可以得到整个的数列数据

        }*/

        return arr[n - 1];
    }

OK,到这里java实现斐波那契数列的三种写法就全部写完了,如果大家还有其他方法,欢迎交流~

发布了79 篇原创文章 · 获赞 284 · 访问量 38万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览