docker安装rasa3中文版

推荐环境:python3.9

  1. 系统安装docker和docker-compose。参考网上教程
  2. 创建相关文件
    cd /usr/local
    mkdir myRasa
    cd myRasa
    touch requirements.txt
    touch Dockerfile
    touch docker-compose.yml
    mkdir transformers_model
    cd transformers_model
    mkdir bert-base-chinese
  3. 编辑requirements.txt
    rasa
    jieba
    transformers
  4. 下载bert-base-chinese模型文件,进入huggingface,下载下图文件,下载好后上传到刚刚新建的bert-base-chinese文件夹下
  5. 编写Dockfile
    # 镜像名称
    FROM python:3.9-slim
    # WORKDIR 后面写的是要部署到服务器上的路径,指定工作目录
    WORKDIR /app
    # 添加所有文件到app 目录下。COPY或者ADD
    ADD . /app
    # 安装依赖包。豆瓣镜像比清华镜像快
    RUN pip --no-cache-dir install -i http://pypi.douban.com/simple/  --trusted-host pypi.douban.com  -r /app/requirements.txt
    EXPOSE 5005
    RUN  rasa init --no-prompt
    VOLUME /app
    VOLUME /app/data
    VOLUME /app/models
    CMD ["run","-m","/app/models","--enable-api","--cors","*","--debug" ,"--endpoints", "endpoints.yml", "--log-file", "out.log", "--debug"]
  6. 创建镜像
    docker build -t myrasa/rasa:v1.0 .
  7. 上面的执行完成之后,会在myRasa下生成初始化的rasa文件,对应修改中文的规则文件。nlu.yml,rules.yml,stories.yml,config.yml,domain.yml,endpoints.yml等,不会可依照参考链接中的修改。
  8. 启动训练容器
    docker run -v $(pwd):/app -p 5005:5005 myrasa/rasa:v1.0 rasa train

    训练执行完成后会在models文件夹下生成模型文件

  9. 启动shell容器
    docker run -v $(pwd):/app -p 5005:5005 myrasa/rasa:v1.0 rasa shell

    上面的训练容器和shell容器用完可rm掉,如果规则文件有修改就要重新训练

  10. 启动api容器
    docker run -v $(pwd):/app -p 5005:5005 myrasa/rasa:v1.0 rasa run --enable-api

    启动成功后,使用此命令验证

    curl --request POST --url http://localhost:5005/webhooks/rest/webhook --header 'content-type: application/json' --data '{"message": "你好"}'
    

上述操作都成功后,不断完善自己的规则文件,然后训练出模型 。

最后使用docker-compose进行最终部署,编辑docker-compose.yml

version: '3.0'
services:
  rasa:
    image: myrasa/rasa:v1.0
    ports:
    - "5005:5005"
    volumes:
    - ./:/app
    command:
    - run
    #command: sh -c "command1; command2"
  #action_server:
    #image: rasa/rasa-sdk:latest
    #ports:
    #-  "5055:5055"
    #volumes:
    #- "./actions:/app/actions"

启动

docker-compose up

rasa其它命令

rasa init:创建一个新的项目,包含示例训练数据,actions和配置文件。
rasa run:使用训练模型开启一个Rasa服务。
rasa shell:通过命令行的方式加载训练模型,然后同聊天机器人进行对话。
rasa train:使用NLU数据和stories训练模型,模型保存在./models中。
rasa interactive:开启一个交互式的学习会话,通过会话的方式,为Rasa模型创建一个新的训练数据。
telemetry:Configuration of Rasa Open Source telemetry reporting.
rasa test:使用测试NLU数据和stories来测试Rasa模型。
rasa visualize:可视化stories。
rasa data:训练数据的工具。
rasa export:通过一个event broker导出会话。
rasa evaluate:评估模型的工具。
-h, --help:帮助命令。
--version:查看Rasa版本信息。
rasa run actions:使用Rasa SDK开启action服务器。
rasa x:在本地启动Rasa X。

参考链接:

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值