LeedCode刷题笔记-盛水最多的容器

该博客介绍了LeetCode的一道经典问题——盛水最多的容器,通过动态规划和双指针策略求解,重点讲解了如何优化算法,避免平方级的时间复杂度,实现线性时间复杂度的解决方案。示例代码展示了具体的实现过程,并对思路进行了总结。
摘要由CSDN通过智能技术生成

LeedCode刷题笔记-盛水最多的容器

题目描述

给你 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0) 。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。

说明:你不能倾斜容器。

示例 1:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-a62vZ0sk-1613702606881)(https://i.loli.net/2021/02/19/28J4zhworMvSnAc.png)]

输入:[1,8,6,2,5,4,8,3,7]
输出:49

解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例 2:

输入:height = [1,1]
输出:1
示例 3:

输入:height = [4,3,2,1,4]
输出:16
示例 4:

输入:height = [1,2,1]
输出:2

提示:

n = height.length
2 <= n <= 3 * 104
0 <= height[i] <= 3 * 104

解题代码

int maxArea(int* height, int heightSize)
{
    int low, high;
    int max = -1, sum;
    low = 0;
    high = heightSize - 1;

    /* 这里使用的就是动态规划的思想,分别从最左边和最右边开始遍历,依次用max存储每一次的最大值 */
    /* 还有这里因为是计算面积,所以对于数组两边,每次移动较小的那一边,才有可能获得更大的容量 */
    while(low < high)
    {
        if(height[low] <= height[high])
        {
            sum = (high - low) * height[low];
            low++;
        }
        else
        {
            sum = (high - low) * height[high];
            high--;
        }
        if(max < sum)
        {
            max = sum;
        }
    }
    return max;
}

思路总结

  • 首先是不能使用依次遍历的方法,这样时间复杂度是O(n^2),首先应该想到的应该是动态规划的思想,利用双指针去依次遍历,存储最大值
  • 还有这里指针移动的方法,应该是数组中的值,谁小,谁就向右移动,因为大的值向右移动,就会导致长方形的底变小,得到的体积只能是变小或者是不变(不变是因为大的值移动之后得到一个更大的值,补偿了向左移动,底变小的损失)。
  • 还有动态规划的话,这里使用的是一个判断语句去存储max的值,这个方法很常用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值