LeedCode刷题笔记-盛水最多的容器
题目描述
给你 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0) 。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
说明:你不能倾斜容器。
示例 1:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-a62vZ0sk-1613702606881)(https://i.loli.net/2021/02/19/28J4zhworMvSnAc.png)]
输入:[1,8,6,2,5,4,8,3,7]
输出:49
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例 2:
输入:height = [1,1]
输出:1
示例 3:
输入:height = [4,3,2,1,4]
输出:16
示例 4:
输入:height = [1,2,1]
输出:2
提示:
n = height.length
2 <= n <= 3 * 104
0 <= height[i] <= 3 * 104
解题代码
int maxArea(int* height, int heightSize)
{
int low, high;
int max = -1, sum;
low = 0;
high = heightSize - 1;
/* 这里使用的就是动态规划的思想,分别从最左边和最右边开始遍历,依次用max存储每一次的最大值 */
/* 还有这里因为是计算面积,所以对于数组两边,每次移动较小的那一边,才有可能获得更大的容量 */
while(low < high)
{
if(height[low] <= height[high])
{
sum = (high - low) * height[low];
low++;
}
else
{
sum = (high - low) * height[high];
high--;
}
if(max < sum)
{
max = sum;
}
}
return max;
}
思路总结
- 首先是不能使用依次遍历的方法,这样时间复杂度是O(n^2),首先应该想到的应该是动态规划的思想,利用双指针去依次遍历,存储最大值
- 还有这里指针移动的方法,应该是数组中的值,谁小,谁就向右移动,因为大的值向右移动,就会导致长方形的底变小,得到的体积只能是变小或者是不变(不变是因为大的值移动之后得到一个更大的值,补偿了向左移动,底变小的损失)。
- 还有动态规划的话,这里使用的是一个判断语句去存储max的值,这个方法很常用。