【编程题】 LeetCode.0011 盛最多水的容器

题目描述:
给你 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0) 。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。

说明:你不能倾斜容器。(木桶理论hh)

示例 1:
输入:[1,8,6,2,5,4,8,3,7]
输出:49 
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例 2:

输入:height = [1,1]
输出:1
示例 3:

输入:height = [4,3,2,1,4]
输出:16
示例 4:

输入:height = [1,2,1]
输出:2

解析:
设容器两边为i,j(其中j>i),则容器的高为min(height[i], height[j]),底weighth为j-i;
由于如果容器的两边是向外扩的话,即i–与j++操作,则无法预知操作后结果与需要越界判断与处理,因此以下的策略都是基于两边向内收缩的。

当是高的一边收缩时(假设为i,其中height[i]> height[j]),则底weighth一定缩短,新的边为height[i+1],若:
1)height[i+1]>height[i],或height[j]<height[i+1]<height[i],则高仍取height[j],其值(j-(i+1))*height[j]一定小于原先的(j-i)*height[j];
2)height[i+1]<height[j],则高仍取height[i+1],其值(j-(i+1))*height[i+1]也一定小于原先的(j-1i*height[j];

因此,只有是当低的一边收缩时,才会有新的可能。

代码:

int maxArea(vector<int>& height) 
	{
		//双指针,标记开始与末尾
		int i = 0, j = height.size() - 1;
		int ans = 0;

		while (i<j)
		{
			int temp = min(height[i], height[j]) * (j - i);
			ans = max(ans, temp);

			if(height[i]<height[j])
			{
				i++;
			}
			else
			{
				j--;
			}
		}

		return ans;
	}

双指针用法及技巧:
双指针分为同向的快慢指针(一般处理链表是否有环),以及反向的双指针(一般用于寻找数组中某两个符合某种条件的数,如滑动窗口、二分查找等)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值