题目描述:
给你 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0) 。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
说明:你不能倾斜容器。(木桶理论hh)
示例 1:
输入:[1,8,6,2,5,4,8,3,7]
输出:49
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例 2:
输入:height = [1,1]
输出:1
示例 3:
输入:height = [4,3,2,1,4]
输出:16
示例 4:
输入:height = [1,2,1]
输出:2
解析:
设容器两边为i,j(其中j>i),则容器的高为min(height[i], height[j]),底weighth为j-i;
由于如果容器的两边是向外扩的话,即i–与j++操作,则无法预知操作后结果与需要越界判断与处理,因此以下的策略都是基于两边向内收缩的。
当是高的一边收缩时(假设为i,其中height[i]> height[j]),则底weighth一定缩短,新的边为height[i+1],若:
1)height[i+1]>height[i],或height[j]<height[i+1]<height[i],则高仍取height[j],其值(j-(i+1))*height[j]一定小于原先的(j-i)*height[j];
2)height[i+1]<height[j],则高仍取height[i+1],其值(j-(i+1))*height[i+1]也一定小于原先的(j-1i*height[j];
因此,只有是当低的一边收缩时,才会有新的可能。
代码:
int maxArea(vector<int>& height)
{
//双指针,标记开始与末尾
int i = 0, j = height.size() - 1;
int ans = 0;
while (i<j)
{
int temp = min(height[i], height[j]) * (j - i);
ans = max(ans, temp);
if(height[i]<height[j])
{
i++;
}
else
{
j--;
}
}
return ans;
}
双指针用法及技巧:
双指针分为同向的快慢指针(一般处理链表是否有环),以及反向的双指针(一般用于寻找数组中某两个符合某种条件的数,如滑动窗口、二分查找等)。