2.1 有限差分法
有限差分法 (finite difference method)是一种数值求解偏微分方程的方法,它将偏微分方程中的连续变量离散化为有限个点上的函数值,然后利用差分逼近导数,从而得到一个差分方程组。通过求解差分方程组,可以得到原偏微分方程的数值解。
有限差分法是一种历史悠久且十分成熟的数值方法,其基本思想可以追溯到18世纪。在20世纪上半叶,随着电子计算机的发展,有限差分法逐渐成为求解偏微分方程的重要方法之一。目前,有限差分法已广泛应用于各种科学工程领域,如物理、工程、地球科学、生物医学、金融等。
有限差分法的应用非常广泛,可以用于求解各种偏微分方程,如抛物型、双曲型和椭圆型偏微分方程。它的优点是简单易懂,容易实现,且精度可控。缺点是需要将连续变量离散化,因此离散化的精度会影响最终的数值解的精度。
在实际应用中,有限差分法通常与其他数值方法结合使用,如有限元法、边界元法、谱方法等。这些方法各有特点,可以针对不同的问题选择合适的方法求解。相关书籍众多。本专栏只介绍其简单的应用, 来帮助读者了解数值方法的发展过程。
2.1.1 有限差分法中的数值微分
数值微分是根据函数在一些离散点的值计算它在某点的 1 阶导数或高阶导数近似值的 方法。先从一个最简单的例子开始, 在区间