题目链接: https://vjudge.net/contest/280753#problem/K
题意: 就是在无向边有向边组成的混合图中是否存在一个环
思路: 此题考查并查集与拓扑排序,对于无向边借助于并查集进行处理 如果两个点有共同的祖先 则这两个点之间有一条无向边 则可以构成一个环对于有向边 借助于拓扑排序进行处理 从而判断是否有环
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#include<algorithm>
#define maxn 1000005
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
int par[maxn],head[maxn],indegree[maxn];
int n,m1,m2,flag,top;
struct node
{
int v,next;
}edge[maxn];
int fid(int x)
{
if(par[x]==x)
return x;
return par[x]=fid(par[x]);
}
void unite(int x,int y)
{
x=fid(x);
y=fid(y);
if(x==y)
{
flag=1;
return;
}
par[x]=y;
}
void add(int u,int v)
{
edge[top].v=v;
edge[top].next=head[u];
head[u]=top++;
}
int topo()
{
queue<int>que;
for(int i=1;i<=n;i++)
{
if(indegree[i]==0)
que.push(i);
}
int k=0;
while(que.size())
{
int t=que.front();
que.pop();
k++;
for(int i=head[t];i!=-1;i=edge[i].next)
{
int v=edge[i].v;
indegree[v]--;
if(indegree[v]==0)
que.push(v);
}
}
if(k<n)
return 1;
return 0;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&n,&m1,&m2);
for(int i=0;i<=n;i++)
par[i]=i;
flag=0;
for(int i=1;i<=m1;i++)
{
int u,v;
scanf("%d%d",&u,&v);
if(flag)
continue;
unite(u,v);
}
memset(indegree,0,sizeof indegree);
memset(head,-1,sizeof head);
top=0;
for(int i=1;i<=m2;i++)
{
int u,v;
scanf("%d%d",&u,&v);
u=fid(u);
v=fid(v);
if(u==v)
flag=1;
if(flag)
continue;
add(u,v);
indegree[v]++;
}
if(flag)
printf("YES\n");
else if(topo())
printf("YES\n");
else
printf("NO\n");
}
return 0;
}