Exploration (HDU - 5222)

题目链接: https://vjudge.net/contest/280753#problem/K
题意: 就是在无向边有向边组成的混合图中是否存在一个环
思路: 此题考查并查集与拓扑排序,对于无向边借助于并查集进行处理 如果两个点有共同的祖先 则这两个点之间有一条无向边 则可以构成一个环对于有向边 借助于拓扑排序进行处理 从而判断是否有环

#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#include<algorithm>
#define maxn 1000005
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
int par[maxn],head[maxn],indegree[maxn];
int n,m1,m2,flag,top;
struct node
{
    int v,next;
}edge[maxn];
int fid(int x)
{
    if(par[x]==x)
        return x;
    return par[x]=fid(par[x]);
}
void unite(int x,int y)
{
   x=fid(x);
   y=fid(y);
   if(x==y)
   {
       flag=1;
       return;
   }
   par[x]=y;
}
void add(int u,int v)
{
    edge[top].v=v;
    edge[top].next=head[u];
    head[u]=top++;
}
int topo()
{
    queue<int>que;
    for(int i=1;i<=n;i++)
    {
        if(indegree[i]==0)
            que.push(i);
    }
    int k=0;
    while(que.size())
    {
        int t=que.front();
        que.pop();
        k++;
        for(int i=head[t];i!=-1;i=edge[i].next)
        {
            int v=edge[i].v;
            indegree[v]--;
            if(indegree[v]==0)
                que.push(v);
        }
    }
    if(k<n)
        return 1;
    return 0;
}
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d%d",&n,&m1,&m2);
        for(int i=0;i<=n;i++)
            par[i]=i;
        flag=0;
        for(int i=1;i<=m1;i++)
        {
            int u,v;
            scanf("%d%d",&u,&v);
            if(flag)
                continue;
            unite(u,v);
        }
        memset(indegree,0,sizeof indegree);
        memset(head,-1,sizeof head);
        top=0;
        for(int i=1;i<=m2;i++)
        {
            int u,v;
            scanf("%d%d",&u,&v);
            u=fid(u);
            v=fid(v);
            if(u==v)
                flag=1;
            if(flag)
                continue;
            add(u,v);
            indegree[v]++;
        }
        if(flag)
            printf("YES\n");
        else if(topo())
           printf("YES\n");
        else
            printf("NO\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值