如何实现快速位翻转总结(各种算法+方法+代码)包含雷德算法4
- https://blog.csdn.net/qq_42820594/article/details/98034003
先贴个有点这个图:
一、查表法
unsigned char ReverseByte(unsigned char value)
{
static unsigned char code ReverseByteTable[256] =
{
0 ,128,64 ,192,32 ,160,96 ,224,16 ,144,80 ,208,48 ,176,112,240,
8 ,136,72 ,200,40 ,168,104,232,24 ,152,88 ,216,56 ,184,120,248,
4 ,132,68 ,196,36 ,164,100,228,20 ,148,84 ,212,52 ,180,116,244,
12 ,140,76 ,204,44 ,172,108,236,28 ,156,92 ,220,60 ,188,124,252,
2 ,130,66 ,194,34 ,162,98 ,226,18 ,146,82 ,210,50 ,178,114,242,
10 ,138,74 ,202,42 ,170,106,234,26 ,154,90 ,218,58 ,186,122,250,
6 ,134,70 ,198,38 ,166,102,230,22 ,150,86 ,214,54 ,182,118,246,
14 ,142,78 ,206,46 ,174,110,238,30 ,158,94 ,222,62 ,190,126,254,
1 ,129,65 ,193,33 ,161,97 ,225,17 ,145,81 ,209,49 ,177,113,241,
9 ,137,73 ,201,41 ,169,105,233,25 ,153,89 ,217,57 ,185,121,249,
5 ,133,69 ,197,37 ,165,101,229,21 ,149,85 ,213,53 ,181,117,245,
13 ,141,77 ,205,45 ,173,109,237,29 ,157,93 ,221,61 ,189,125,253,
3 ,131,67 ,195,35 ,163,99 ,227,19 ,147,83 ,211,51 ,179,115,243,
11 ,139,75 ,203,43 ,171,107,235,27 ,155,91 ,219,59 ,187,123,251,
7 ,135,71 ,199,39 ,167,103,231,23 ,151,87 ,215,55 ,183,119,247,
15 ,143,79 ,207,47 ,175,111,239,31 ,159,95 ,223,63 ,191,127,255,
};//定义一个映射
return ReverseByteTable[value];//下标对应输入值,对应元素就是输出。
}
(也可以分两次做,每次4位元,用16查表法。)
a
二、端口翻转法
阔气点的话,空出16个IO口(2组),一个接输入,另一个接输出。
(我看有人说,果用的是CortexM3处理器,有一条REV指令,没用过不知道,可以自己查查;还有说汇编有一条有半字交换指令SWAP A,可以把累加器A中的低四位与高四位交换。)
三、蝶形变换
unsigned char ReverseByte(unsigned char dat)
{
unsigned char ret;
ret=dat;
ret=(ret>>4)|(ret<<4);
ret=((ret&0xcc)>>2)|((ret&0x33)<<2);
ret=((ret&0xaa)>>1)|((ret&0x55)<<1);
return ret;
}
四、不知道什么的
不是我写的,我在网上搜集的
可以扩展到任意位数。
查表法在16/32位时就太站空间了
其实有点像信号与系统里面的FFT蝶形变换,可以从最小到最大位数开始交换,也可以从最大位数到最小位数交换。
0xA : B1010
0x5 : B0101
0xC : B1100
0x3 : B0011
0xF0 : B1111 0000
0x0F : B0000 1111
Iterate from long to short
eg. 8 bit reverse.
abcd efgh -> efgh abcd -> ghef cdab -> hgfe dcba
1.
abcd efgh -> efgh abcd
2.
ef00 ab00 -> 00ef 00ab
00gh 00cd -> gh00 cd00
3.
g0e0 c0a0 -> 0g0e 0c0a
0h0f 0d0b -> h0f0 d0b0
or iterate from short to long
eg. 8 bit reverse.
abcd efgh -> badc fehg -> dcba hgfe -> hgfe dcba
unsigned char ReBit8(unsigned char x)
{
x = ((x >> 4) & 0x0F) | ((x << 4) & 0xF0);
x = ((x >> 2) & 0x33) | ((x << 2) & 0xCC);
x = ((x >> 1) & 0x55) | ((x << 1) & 0xAA);
return x;
}
//这里是因为keil for 51的编译器认为int是16位的
//如果是stm32或者是GCC编译器那么int是32位的,32和64位下的C99编译器都是这样的
inline unsigned int ReBit16(unsigned int x)
{
return ((unsigned int)ReBit8(x)<<8) | ReBit8((x>>8));
}
inline unsigned long ReBit32(unsigned long x)
{
return ((unsigned long)ReBit16(x)<<16) | ReBit16((x>>16));
}
五、FFT倒序算法-雷德算法
快速傅里叶变换中用到的倒位序算法。
下面假如使用A[I]存的是顺序位序,而B[J]存的是倒位序。I<J的时候需要变序,I>J的时候就不用,不然就白忙活了。
例如:N = 8 的时候,(红色标注表示要变序)
倒位序 | 顺序 | (二进制表示)倒位序 | 顺序 |
---|---|---|---|
0 | 0 | 000 | 000 |
4 | 1 | 100 | 001 |
2 | 2 | 010 | 010 |
6 | 3 | 110 | 011 |
1 | 4 | 001 | 100 |
5 | 5 | 101 | 101 |
3 | 6 | 011 | 110 |
7 | 7 | 111 | 111 |
由上面的表可以看出:
按自然顺序排列的二进制数,其下面一个数总是比其上面一个数大1,即下面一个数是上面一个数在最低位加1并向高位进位而得到的。
而倒位序二进制数的下面一个数是上面一个数在最高位加1并由高位向低位进位而得到。
I、J都是从0开始,若已知某个倒位序数J,要求下一个倒位序数,则应先判断J的最高位是否为0,这可与k=N/2相比较,因为N/2总是等于100(B)的。
k=N/2
如果k>J //这表明J的最高位为0
只要把该位变为1(J与k=N/2相加即可),
就得到下一个倒位序数;
如果K<=J //这表明J的最高位为1
可将最高位变为0(J与k=N/2相减即可)。
然后还需判断次高位,这可与k=N\4相比较,
如果次高位为0
则需将它变为1(加N\4即可)其他位不变,
既得到下一个倒位序数
如果次高位是1
则需将它也变为0
然后再判断下一位
以此类推,
直到k = 0为止。
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
int main(void)
{
int array[8]={0,1,2,3,4,5,6,7};
int i,j,k;
int N = 8;
int temp;
j = 0;
for(i = 0; i < N -1; i ++)
{
if(i < j)
{
temp = array[i];
array[i] = array[j];
array[j] = temp;
}
k = N >> 1;
while( k <= j)
{
j = j - k;
k >>= 1;
}
j = j + k;
}
for( i = 0; i < N; i ++)
printf("%d ",array[i]);
printf("\n");
return 0;
}
//封装一下
//函数功能:求指定位数倒位序value的下一个倒位序,size = 0xFF+1 = 2^位数
int Rader(int value,int size)
{
int next = 0; //下一个倒位序
int k = size >> 1; //k = size / 2
while(k > 0)
{
if (k>value) //如果k>size,说明value的最高位为0
{
next = value + k;//下一个倒码数就是将value的最高位变成1(直接加上k)
break; //推出循环
}
else //否则 k<=value 说明value的最高位是1
{
value -= k; //先将value的最高位变成0(直接减去k)
k >>= 1; //然后k=k/2 等待比较次高位 循环继续
}
}
return next;
}
C++的封装
#include <iostream>
using namespace std;
const int N = 8;
/*函数功能:求指定位数倒位序value的下一个倒位序,size = 0xFF+1 = 2^位数 */
int Rader(int value,int size = N)
{
int next = 0; //下一个倒码数
int k = size >> 1; //k = size / 2
while(k > 0)
{
if (k>value) //如果k>size,说明value的最高位为0
{
next = value + k;//下一个倒码数就是将value的最高位变成1(直接加上k)
break; //推出循环
}
else //否则 k<=value 说明value的最高位是1
{
value -= k; //先将value的最高位变成0(直接减去k)
k >>= 1; //然后k=k/2 等待比较次高位 循环继续
}
}
return next;
}
//函数功能:对顺序数组进行二进制码倒序排列
template <typename T>
static void array_rader(T array[], int bitLen)
{
if (NULL == array || bitLen<=0)
{
return;
}
for (int i = 1; i < bitLen;++i)
{
*(array + i) = Rader(*(array + i-1));
}
}
六、一个不动脑子的算法
就是不断交换对应高位和低位
int reverseBits(int value, int bitLen) //要位逆的数及总个数的二进制位数
{
int i = 0, ret = 0;
for(i = 0; i < bitLen; i++)
{
ret |= (value & 0x1) << (bitLen - 1 - i);//采用高效的移位运算
value >>= 1;
}
return ret;
}
七、由奇偶分组造成的倒位序排列
以N=8为例,如下图所示: