sdut-array2-5 打印“杨辉三角“ 品中国数学史 增民族自豪感(2)

杨辉三角,又称帕斯卡三角,是中国南宋数学家杨辉在1261年的《详解九章算法》中记录的数学成果,早于欧洲发现者帕斯卡600年。该三角形展示了二项式系数的图形化表示,用于展开(a+b)^n的项。在给定的代码示例中,展示了如何根据输入的行数n打印杨辉三角,并遵循特定的输出格式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景介绍

北宋人贾宪约1050年首先使用“贾宪三角”进行高次开方运算。
南宋数学家杨辉在《详解九章算法》(1261年)记载并保存了“贾宪三角”,故称杨辉三角。杨辉三角是中国数学史上的一个伟大成就。
杨辉三角,是中国古代数学的杰出研究成果之一,它把二项式系数图形化,把组合数内在的一些代数性质直观地从图形中体现出来,是一种离散型的数与形的结合。

中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现。在欧洲,帕斯卡(1623----1662)在1654年发现这一规律,所以这个表又叫做帕斯卡三角形。帕斯卡的发现比杨辉要迟393年,比贾宪迟600年。

杨辉三角数字的特点为:

(1)在三角形的首列和对角线上,数值均为1;

(2)其余数据为:每个数字等于上一行的左右两个数字之和,第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,用公式表示为: C(n+1,i)=C(n,i)+C(n,i-1)。

图示为:

杨辉三角的应用:(a+b)的n次方,展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项。

输入格式:

欲打印杨辉三角的行数n(1<=n<=13)。

输出格式:

(1)输出的数据为等腰三角形样式;

(2)每个数字占据4个字符的位置,数字左对齐,数字不足4位的右边留出空格;

(3)最后一行的数值“1”顶格,前面无空格。

提示:以n=5,分析行首空格数为:

输入样例1:

5

输出样例:

        1   
      1   1   
    1   2   1   
  1   3   3   1   
1   4   6   4   1   

输入样例2:

6

输出样例:

          1   
        1   1   
      1   2   1   
    1   3   3   1   
  1   4   6   4   1   
1   5   10  10  5   1   

代码长度限制16 KB

时间限制        400 ms

内存限制        64 MB

#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
int main()
{
	int a[20][20];
	int n;

	scanf("%d", &n);
	int i, j;
	for (i = 0; i < n; i++)
	{
		for (j = 0; j <= i; j++)
		{
			if (i == j || j == 0)
			{
				a[i][j] = 1;
			}
			else
			{
				a[i][j] = a[i - 1][j - 1] + a[i - 1][j];
			}
		}
	}
for (int i = 0; i < n; i++){
	for(int t = 0 ; t < (n * 2 - 2) - i * 2 ; t++)  {
		printf(" ");
	}
	for (int j = 0; j <= i; j++){
		printf("%-4d",a[i][j]);
	}
	if (i != n - 1){    printf("\n");}}

	return 0;
}

### Java 实现检测数组中缺失的数字 要通过 Java 程序实现检测数组中的缺失数字,可以采用多种方法。以下是基于排序法公式的两种常见解决方案。 #### 方法一:利用排序法 此方法的核心思想是对数组进行排序后逐一比较相邻元素之间的差值是否为 1。如果发现某两个相邻元素之间相差超过 1,则说明中间有缺失的数字[^2]。 ```java import java.util.Arrays; public class MissingNumberFinder { public static void main(String[] args) { int[] array = {3, 7, 1, 2, 8, 4, 5}; // 对数组进行排序 Arrays.sort(array); // 遍历已排序数组并查找缺失的数字 for (int i = 0; i < array.length - 1; i++) { if (array[i + 1] != array[i] + 1 && array[i + 1] != array[i]) { System.out.println("Missing number is: " + (array[i] + 1)); } } } } ``` 这种方法的时间复杂度主要由排序决定,即 O(n log n)--- #### 方法二:利用高斯求公式 对于从 1 到 N 的连续整数序列,其总可以通过高斯求公式计算得出 \( S = \frac{N(N+1)}{2} \)。实际数组的总与理论总之差即是缺失的数字[^1]。 ```java public class MissingNumberGaussFormula { public static void main(String[] args) { int[] array = {1, 2, 4, 5, 6, 7, 8, 9, 10}; int n = array.length + 1; int expectedSum = n * (n + 1) / 2; // 计算理论上完整的总 int actualSum = 0; for (int num : array) { actualSum += num; // 计算当前数组的实际总 } int missingNumber = expectedSum - actualSum; // 找出差异部分 System.out.println("The missing number is: " + missingNumber); } } ``` 上述代码的时间复杂度仅为 O(n),因为只需要遍历一次数组即可完成操作。 --- #### 性能对比分析 - **排序法**适合处理未指定范围的大规模数据集,但时间复杂度较高。 - **高斯求法**适用于知道确切数值范围的情况(如题目限定在 110 或者 1100),效率更高且简单易懂。 无论哪种方式都可以有效解决问题,具体选用取决于实际情况以及输入条件的特点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值