机器学习笔记(二)

上节我们说到了用梯度下降法求参数最小值。
这节我们介绍几种快速梯度下降的方法:
1.梯度下降法实践 1-特征缩放:该方法就是将特征的尺度归一化
在这里插入图片描述由上图可以看出,归一化能后帮助梯度下降算法更快的收敛。
梯度下降法实践 2-学习率
梯度下降算法的每次迭代受到学习率的影响,如果学习率?过小,则达到收敛所需的迭
代次数会非常高;如果学习率?过大,每次迭代可能不会减小代价函数,可能会越过局部最
小值导致无法收敛。
通常可以考虑尝试些学习率:
? = 0.01,0.03,0.1,0.3,1,3,10

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值