咳咳,当年不写博客的后果。
三分法用于处理单峰函数的最值问题。
对于最大值和最小值的处理是不太一样的,注意一下谁往中间走。
这道题固定左端点后,很明显右边是个单峰,所以右边的最短可以视作一个定值,左边移动都对应一个右边的最短值,这个最短值也可以发现是个单峰。
所以三分套三分,先固定左边,然后看右边。
#include<bits/stdc++.h>
using namespace std;
#define in read()
#define eps 1e-8
int in{
int cnt=0,f=1;char ch=0;
while(!isdigit(ch)){
ch=getchar();if(ch=='-')f=-1;
}
while(isdigit(ch)){
cnt=cnt*10+ch-48;
ch=getchar();
}
return cnt*f;
}
struct node{
double x,y;
node(){};
node(double xx,double yy):x(xx),y(yy){};
node operator + (const node &a){
return (node){x+a.x,y+a.y};
}
node operator - (const node &a){
return (node){x-a.x,y-a.y};
}
node operator / (double a){
return (node){x/a,y/a};
}
}a,b,c,d;
double p,q,r;
double dis(node a,node b){
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
double calc(node x){
node l=c,rr=d;
while(dis(l,rr)>eps){
node e=(rr-l)/3;
node lmid=l+e,rmid=rr-e;
double ans1=dis(x,lmid)/r+dis(lmid,d)/q;
double ans2=dis(x,rmid)/r+dis(rmid,d)/q;
if(ans1-ans2>eps)l=lmid;else rr=rmid;
}
return dis(x,l)/r+dis(l,d)/q;
}
void solve(){
node l=a,rr=b;
while(dis(l,rr)>eps){
node x=(rr-l)/3;
node lmid=l+x,rmid=rr-x;
double ans1=calc(lmid)+dis(lmid,a)/p;
double ans2=calc(rmid)+dis(rmid,a)/p;
if(ans1-ans2>eps)l=lmid;else rr=rmid;
}printf("%.2lf",calc(l)+dis(l,a)/p);
}
int main(){
scanf("%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf",&a.x,&a.y,&b.x,&b.y,&c.x,&c.y,&d.x,&d.y,&p,&q,&r);
solve();
return 0;
}