万能woj。
你想通过传送门进去吗qwq你太天真了qwq这是内网的传送门qwq自行搜索网址oi.cdshishi.net:8000 叶子最可爱了!
一条贯穿最多长度的直线。
首先有个奇怪的思维转换。
为了计算,我们发现,肯定存在一条最优直线,穿过某些点的端点。
如果不在端点那就挪过去ouo。
那么对于每条直线有两个端点我们都枚举一次,这里复杂度2*n。
所以这是一条确定了一点的直线。那么对于任何一条别的线段,其对于该直线来说是一个斜率区间。即斜率在该区间的这条直线可以经过这个线段。
那么我们就把原问题转化成了一个区间序列问题。
差分即可。
注意
为了防止精度爆炸,我们将斜率用倒数表示(本题数据原因),反正答案不变。
因为端点也算,所以差分时消除答案要加eps。
注意斜率不能为0。
注意原线段的答案要累加。
#include<bits/stdc++.h>
using namespace std;
#define in read()
int in{
int cnt=0,f=1;char ch=0;
while(!isdigit(ch)){
ch=getchar();if(ch=='-')f=-1;
}
while(isdigit(ch)){
cnt=cnt*10+ch-48;
ch=getchar();
}return cnt*f;
}
const double eps=1e-7;
struct node{
int l,r,y,len;
}a[2003];
int n;
int tot,ans;
struct bili{
double k;
int len;
}q[4003];int cnt;
bool cmpp(bili a,bili b){
return a.k<b.k;
}
void work(double x,double y){
cnt=0;
for(int i=1;i<=n;i++){
if(a[i].y==y)continue;
q[++cnt].k=(a[i].l-x)/(a[i].y-y);
q[++cnt].k=(a[i].r-x)/(a[i].y-y);
if(q[cnt].k>q[cnt-1].k){
q[cnt-1].len=a[i].len;q[cnt].len=-a[i].len;
q[cnt].k+=eps;
}else{
q[cnt].len=a[i].len;q[cnt-1].len=-a[i].len;
q[cnt-1].k+=eps;
}
}sort(q+1,q+cnt+1,cmpp);
// for(int i=1;i<=cnt;i++){
// cout<<q[i].len<<" ";
// }cout<<endl;
for(int i=1;i<=cnt;i++){
tot+=q[i].len;ans=max(ans,tot);
}
}
void solve(){
ans=0;
for(int i=1;i<=n;i++){
scanf("%d%d%d",&a[i].l,&a[i].r,&a[i].y);
if(a[i].l>a[i].r)swap(a[i].l,a[i].r);
a[i].len=a[i].r-a[i].l;
}
for(int i=1;i<=n;i++){
tot=a[i].len;ans=max(ans,tot);
work(a[i].l,a[i].y);
tot=a[i].len;
work(a[i].r,a[i].y);
}cout<<ans<<endl;
}
int main(){
while(scanf("%d",&n)!=EOF){
solve();
}
return 0;
}