【假计算几何】bzoj4614 Oil

万能woj。

你想通过传送门进去吗qwq你太天真了qwq这是内网的传送门qwq自行搜索网址oi.cdshishi.net:8000 叶子最可爱了!

一条贯穿最多长度的直线。

首先有个奇怪的思维转换。

为了计算,我们发现,肯定存在一条最优直线,穿过某些点的端点。

如果不在端点那就挪过去ouo。

那么对于每条直线有两个端点我们都枚举一次,这里复杂度2*n。

所以这是一条确定了一点的直线。那么对于任何一条别的线段,其对于该直线来说是一个斜率区间。即斜率在该区间的这条直线可以经过这个线段。

那么我们就把原问题转化成了一个区间序列问题。

差分即可。

注意

为了防止精度爆炸,我们将斜率用倒数表示(本题数据原因),反正答案不变。

因为端点也算,所以差分时消除答案要加eps。

注意斜率不能为0。

注意原线段的答案要累加。

#include<bits/stdc++.h>
using namespace std;
#define in read()
int in{
	int cnt=0,f=1;char ch=0;
	while(!isdigit(ch)){
		ch=getchar();if(ch=='-')f=-1;
	}
	while(isdigit(ch)){
		cnt=cnt*10+ch-48;
		ch=getchar();
	}return cnt*f;
}
const double eps=1e-7;
struct node{
	int l,r,y,len;
}a[2003];
int n;
int tot,ans;
struct bili{
	double k;
	int len;
}q[4003];int cnt;
bool cmpp(bili a,bili b){
	return a.k<b.k;
}
void work(double x,double y){
	cnt=0;
	for(int i=1;i<=n;i++){
		if(a[i].y==y)continue;
		q[++cnt].k=(a[i].l-x)/(a[i].y-y);
		q[++cnt].k=(a[i].r-x)/(a[i].y-y);
		if(q[cnt].k>q[cnt-1].k){
			q[cnt-1].len=a[i].len;q[cnt].len=-a[i].len;
			q[cnt].k+=eps;
		}else{
			q[cnt].len=a[i].len;q[cnt-1].len=-a[i].len;
			q[cnt-1].k+=eps;
		}
	}sort(q+1,q+cnt+1,cmpp);
//	for(int i=1;i<=cnt;i++){
//		cout<<q[i].len<<" ";
//	}cout<<endl;
	for(int i=1;i<=cnt;i++){
		tot+=q[i].len;ans=max(ans,tot);
	}
}
void solve(){
	ans=0;
	for(int i=1;i<=n;i++){
		scanf("%d%d%d",&a[i].l,&a[i].r,&a[i].y);
		if(a[i].l>a[i].r)swap(a[i].l,a[i].r);
		a[i].len=a[i].r-a[i].l;
	}
	for(int i=1;i<=n;i++){
		tot=a[i].len;ans=max(ans,tot);
		work(a[i].l,a[i].y);
		tot=a[i].len;
		work(a[i].r,a[i].y);
	}cout<<ans<<endl;
}
int main(){
	while(scanf("%d",&n)!=EOF){
		solve();
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值