(一) 以微分初步知识及梯度下降算法解决最优化问题
知识点1:sympy库
知识点2:梯度与海塞矩阵
知识点3:优化问题
(1)一元变量
(2)多元变量
对比可以发现,一阶导数对应于梯度,二阶导数对应于海塞矩阵,半正定对应于大于等于零,负定对应于小于零…
知识点4:梯度下降法
scipy没有maximum,所以使用minimize曲线救国。
知识点5:lambda表示式
(二) 以插值知识解决数据处理问题
离散点间使用分段函数表示,此时由于需要连续处理,需要使得分段连接、斜率相同和曲率相同这三大条件满足,因此会得到分段三次曲线。
(三) 以积分知识解决工程问题
知识点1:scipy的integrate包
知识点2:实例及其相关计算工具
(四) 实战项目——人口增长问题
由于时间关系,只做了最小二乘法的预测。(见部分代码和图)