2013年蓝桥杯JavaA组题解

2013年蓝桥杯JavaA组题解

1、世纪末的星期

标题: 世纪末的星期

曾有邪教称1999年12月31日是世界末日。当然该谣言已经不攻自破。

还有人称今后的某个世纪末的12月31日,如果是星期一则会…

有趣的是,任何一个世纪末的年份的12月31日都不可能是星期一!!

于是,“谣言制造商”又修改为星期日…

1999年的12月31日是星期五,请问:未来哪一个离我们最近的一个世纪末年(即xx99年)的12月31日正好是星期天(即星期日)?

请回答该年份(只写这个4位整数,不要写12月31等多余信息)

//方法1
import java.util.Calendar;

public static void main(String[] args) {
		Calendar calendar = Calendar.getInstance(); //实例化
		for(int year = 1999 ; year < 10000 ; year += 100){ //一个世纪 100年
			calendar.set(Calendar.YEAR, year);
			calendar.set(Calendar.MONTH, 11);//12月
			calendar.set(Calendar.DAY_OF_MONTH,31); 
//			System.out.println(year + " " +calendar.get(Calendar.DAY_OF_WEEK));
			if(calendar.get(Calendar.DAY_OF_WEEK) == 1){
				System.out.println(year);
				break;
			}
		}
		
}
//方法2
import java.util.Calendar;

public static void main(String[] args) {
		Calendar calendar = Calendar.getInstance();
		for(int year = 1999 ; year < 10000 ; year += 100){
			calendar.set(year, 11, 31); //注意0是代表1月份,所以12月份是11
			if(calendar.get(Calendar.DAY_OF_WEEK) == 1) { //星期日为1
				System.out.println(year);
				break;
			}
		}
}

2、振兴中华

【题目】

标题: 振兴中华

小明参加了学校的趣味运动会,其中的一个项目是:跳格子。
地上画着一些格子,每个格子里写一个字,如下所示:(也可参见p1.jpg)

从我做起振
我做起振兴
做起振兴中
起振兴中华

比赛时,先站在左上角的写着“从”字的格子里,可以横向或纵向跳到相邻的格子里,但不能跳到对角的格子或其它位置。一直要跳到“华”字结束。

要求跳过的路线刚好构成“从我做起振兴中华”这句话。

请你帮助小明算一算他一共有多少种可能的跳跃路线呢?

答案是一个整数,请通过浏览器直接提交该数字。
注意:不要提交解答过程,或其它辅助说明类的内容。

*/
//f(n)=f(n-1)+f(n-2)

图一

public static void main(String[] args) {
    //  重复
    //  变化
    //  边界
    int ans = dfs(0, 0);
    System.out.println(ans);
  }

  private static int dfs(int x, int y) {
    if (x == 3 || y == 4) return 1;
    return dfs(x + 1, y) + dfs(x, y + 1);//将两种走法的路线数相加
  }

3、梅森素数

如果一个数字的所有真因子之和等于自身,则称它为“完全数”或“完美数”

例如:6 = 1 + 2 + 3

28 = 1 + 2 + 4 + 7 + 14

早在公元前300多年,欧几里得就给出了判定完全数的定理:

若 2^n - 1 是素数,则 2^(n-1) * (2^n - 1) 是完全数。

其中 ^ 表示“乘方”运算,乘方的优先级比四则运算高,例如:2^3 = 8, 2 * 2^3 = 16, 2^3-1 = 7

但人们很快发现,当n很大时,判定一个大数是否为素数到今天也依然是个难题。

因为法国数学家梅森的猜想,我们习惯上把形如:2^n - 1 的素数称为:梅森素数。

截止2013年2月,一共只找到了48个梅森素数。 新近找到的梅森素数太大,以至于难于用一般的编程思路窥其全貌,所以我们把任务的难度降低一点:

1963年,美国伊利诺伊大学为了纪念他们找到的第23个梅森素数 n=11213,在每个寄出的信封上都印上了“2^11213-1 是素数”的字样。

2^11213 - 1 这个数字已经很大(有3000多位),请你编程求出这个素数的十进制表示的最后100位。

答案是一个长度为100的数字串,请通过浏览器直接提交该数字。
注意:不要提交解答过程,或其它辅助说明类的内容。

//方法1
import java.math.BigInteger;
import java.util.Scanner;

public static void main(String[] args) {
		// 相当于 2^11213 - 1
		BigInteger x = BigInteger.valueOf(2).pow(11213).subtract(BigInteger.ONE); 
		String s = x.toString(); //把结果变成字符串
		int length = s.length(); //计算有多少位
		//System.out.println(length); 总长度
		
		String ans = s.substring(length - 100);//-1相当于最后一位,-100就相当最后100位
		System.out.println(ans);
}
//方法2
import java.math.BigInteger;
import java.util.Scanner;

public static void main(String[] args) {
		BigInteger two = BigInteger.valueOf(2); 
		BigInteger ans = BigInteger.valueOf(1);

		for (int i = 1; i <= 11213; i++) {
			ans = ans.multiply(two); // multiply  乘法
		}
		ans = ans.subtract(BigInteger.valueOf(1)); //subtract 减法
		// System.out.println(ans); //输出全数

		int n = ans.toString().length(); // 计算结束数的长度
		System.out.println(ans.toString().substring(n - 100));
}

4、颠倒的价牌

小李的店里专卖其它店中下架的样品电视机,可称为:样品电视专卖店。

其标价都是4位数字(即千元不等)。

小李为了标价清晰、方便,使用了预制的类似数码管的标价签,只要用颜色笔涂数字就可以了(参见p1.jpg)。

这种价牌有个特点,对一些数字,倒过来看也是合理的数字。如:1 2 5 6 8 9 0 都可以。这样一来,如果牌子挂倒了,有可能完全变成了另一个价格,
比如:1958 倒着挂就是:8561,差了几千元啊!!

当然,多数情况不能倒读,比如,1110 就不能倒过来,因为0不能作为开始数字。

有一天,悲剧终于发生了。某个店员不小心把店里的某两个价格牌给挂倒了。并且这两个价格牌的电视机都卖出去了!

庆幸的是价格出入不大,其中一个价牌赔了2百多,另一个价牌却赚了8百多,综合起来,反而多赚了558元。

请根据这些信息计算:赔钱的那个价牌正确的价格应该是多少?

答案是一个4位的整数,请通过浏览器直接提交该数字。
注意:不要提交解答过程,或其它辅助说明类的内容。

关键字提取:

//4位数字 颠倒可读 一个价牌赔了2百多 一个价牌却赚了8百多 赚了558元
//问 赔钱的那个价牌正确的价格

在这里插入图片描述

import java.util.ArrayList;

public class _04颠倒的价牌 {

	/**
	 * @param args
	 */
	public static void main(String[] args) {
		ArrayList<Price> a1 = new ArrayList<Price>();
		ArrayList<Price> a2 = new ArrayList<Price>();
		
		//枚举四位数,简单筛选
		for(int i = 1000 ; i < 10000 ; i++){
			//将其颠倒,和原价做差,将赔200多的放入一个集合,将赚800多的放入一个集合
			String s = "" + i;
			if(s.contains("3") || s.contains("4") || s.contains("7") ) //判断是否等于3,4,7是就跳过
				continue;  
			
			String re_s = reverse(s); //颠倒后
			
			int il = Integer.parseInt(re_s); //把反转后的数,转化为整数
			
			int plus = il - i; //颠倒价 - 原价
			
			if(plus < -200 && plus > -300) //赔钱
				a1.add(new Price(i , plus));
			
			if(plus < 900 && plus > 800) //赚钱
				a2.add(new Price(i, plus));
		}
		
		//遍历两个集合两两组合,检查是否相加为588
		for (Price p1 : a1) {
			for (Price p2 : a2) {
				
				if(p1.plus + p2.plus == 588){ //赔钱 + 赚钱 
					//输出结果
					System.out.println(p1.p + " " + p1.plus);
					System.out.println(p2.p + " " + p2.plus);
				}
			}
		}
	}

	private static String reverse(String s) {
		char[] ans = new char[s.length()];
		
		for (int i = s.length() - 1, j = 0; i >= 0; i--, j++) { //从后面存放
			char c = s.charAt(i);
			if(c == '6')  //只有6和9是要颠倒
				ans[j] = '9';
			else if(c == '9')
				ans[j] = '6';
			else
				ans[j] = c;
		}
		return new String(ans);
	}

	private static class Price {
		int p; // 原价
		int plus; // 颠倒价 - 原价

		public Price(int p, int plus) {
//			 super();
			this.p = p;
			this.plus = plus;
		}

	}

}

7、错误票据

标题:错误票据

某涉密单位下发了某种票据,并要在年终全部收回。

每张票据有唯一的ID号。全年所有票据的ID号是连续的,但ID的开始数码是随机选定的。

因为工作人员疏忽,在录入ID号的时候发生了一处错误,造成了某个ID断号,另外一个ID重号。

你的任务是通过编程,找出断号的ID和重号的ID。

假设断号不可能发生在最大和最小号。

要求程序首先输入一个整数N(N<100)表示后面数据行数。
接着读入N行数据。
每行数据长度不等,是用空格分开的若干个(不大于100个)正整数(不大于100000)
每个整数代表一个ID号。

要求程序输出1行,含两个整数m n,用空格分隔。
其中,m表示断号ID,n表示重号ID

例如:
用户输入:
2
5 6 8 11 9
10 12 9

则程序输出:
7 9

再例如:
用户输入:
6
164 178 108 109 180 155 141 159 104 182 179 118 137 184 115 124 125 129 168 196
172 189 127 107 112 192 103 131 133 169 158
128 102 110 148 139 157 140 195 197
185 152 135 106 123 173 122 136 174 191 145 116 151 143 175 120 161 134 162 190
149 138 142 146 199 126 165 156 153 193 144 166 170 121 171 132 101 194 187 188
113 130 176 154 177 120 117 150 114 183 186 181 100 163 160 167 147 198 111 119

则程序输出:
105 120

资源约定:
峰值内存消耗(含虚拟机) < 64M
CPU消耗 < 2000ms

请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。

所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意:不要使用package语句。不要使用jdk1.6及以上版本的特性。
注意:主类的名字必须是:Main,否则按无效代码处理。

public class _7错误票据 {

	/**
	 * @param args
	 */
	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);
		ArrayList<Integer> list = new ArrayList<Integer>();
		int N = sc.nextInt(); //输入有多少行
		sc.nextLine();  //吃掉整数后面的换行符
		
		for(int i = 0 ; i < N ; i++){
			
			String line = sc.nextLine(); //输入一行一行的字符
			String[] split = line.split(" "); //以空格为分割符
			for(int j = 0 ; j < split.length ; j++){
				list.add(Integer.parseInt(split[j])); //把分割好的字符,转换成整型
			}
		}
		
//		System.out.println(list.size()); 测试输入是否有问题
		
		Collections.sort(list); //给list数组 排序
		int a = 0 , b = 0; //用来记断号和重号
		
		for(int i = 1 ; i < list.size() ; i++){ //下标从1开始
			if(list.get(i) - list.get(i - 1) == 2){ //用前一个减去后一个
				a = list.get(i) - 1; //减1就得到断号 ,存放到a变量中
			}
			
			if(list.get(i).equals(list.get(i - 1))){ //两对象比较是否相同时用 equals()
				b = list.get(i);
			}
		}
		System.out.println(a+" " + b);
		
	}

}

8、带分数

100 可以表示为带分数的形式:100 = 3 + 69258 / 714

还可以表示为:100 = 82 + 3546 / 197

注意特征:带分数中,数字1~9分别出现且只出现一次(不包含0)。

类似这样的带分数,100 有 11 种表示法。

题目要求:
从标准输入读入一个正整数N (N<1000*1000)
程序输出该数字用数码1~9不重复不遗漏地组成带分数表示的全部种数。
注意:不要求输出每个表示,只统计有多少表示法!

例如:
用户输入:
100
程序输出:
11

再例如:
用户输入:
105
程序输出:
6

资源约定:
峰值内存消耗(含虚拟机) < 64M
CPU消耗 < 3000ms

请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。

所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意:不要使用package语句。不要使用jdk1.6及以上版本的特性。
注意:主类的名字必须是:Main,否则按无效代码处理。

public class _8带分数 {

	static int ans;
	private static int N;

	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);
		N = sc.nextInt();
		int[] arr = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
		f(arr , 0); //全排列
		System.out.println(ans);
	}
	
	
//	确认某一个排列的第k位
	private static void f(int[] arr , int k){
		
		if(k == 9){ //全部确认
			check(arr);
			return ;
		}
		
		
		for(int i = k ; i < arr.length; i++){
//			将第i位和第k位交换
			int t = arr[i];
			arr[i] = arr[k];
			arr[k] = t;
			
//			移交下一层去确认k+1位
			f(arr , k + 1);
			
//			回溯(换回来)
			t = arr[i];
			arr[i] = arr[k];
			arr[k] = t;
		}
	}
	
//	枚举加号和除号的位置
	private static void check(int[] arr){
		//+前的字符数最多是7  ,因为最后要留有两个数相除
		for(int i = 1 ; i <= 7 ; i++){
			int num1 = toInt(arr , 0, i); //前面的一段整数
			if(num1 >= N) continue; //如果此时+ 好的数额已经超过了N,没有必要验算了
			//前面的字符数
			for(int j = 1 ; j <= 8 - i ; j++){
				int num2 = toInt(arr , i , j);
				int num3 = toInt(arr , i + j , 9 - i - j);
				if(num2 % num3 == 0 && num1 + num2 / num3 == N){ //是否符合题目要求
					ans++;
				}
			}
		}
	}
	
    
	private static int toInt(int[] arr , int pos , int len){
		int t = 1;
		int ans = 0;
		for(int i = pos + len - 1 ; i >= pos ; i--){
			ans += arr[i] * t;
			t *= 10;
		}
		return ans;
	}
}

9、剪格子

如图p1.jpg所示,3 x 3 的格子中填写了一些整数。

我们沿着图中的红色线剪开,得到两个部分,每个部分的数字和都是60。

本题的要求就是请你编程判定:对给定的m x n 的格子中的整数,是否可以分割为两个部分,使得这两个区域的数字和相等。
如果存在多种解答,请输出包含左上角格子的那个区域包含的格子的最小数目。
如果无法分割,则输出 0

程序输入输出格式要求:
程序先读入两个整数 m n 用空格分割 (m,n<10)
表示表格的宽度和高度
接下来是n行,每行m个正整数,用空格分开。每个整数不大于10000
程序输出:在所有解中,包含左上角的分割区可能包含的最小的格子数目。

例如:
用户输入:
3 3
10 1 52
20 30 1
1 2 3

则程序输出:
3

再例如:
用户输入:
4 3
1 1 1 1
1 30 80 2
1 1 1 100

则程序输出:
10

(参见p2.jpg)

资源约定:
峰值内存消耗 < 64M
CPU消耗 < 5000ms

图一
图二

public class _9剪格子 {

	/**
	 * @param args
	 */

	static int[][] g;
	static int[][] vis; // 用来做标记
	private static int n;
	private static int m;
	private static int total; // 用来存放输入数的总合
	private static int ans = Integer.MAX_VALUE;// Integer的最大值

	/**
	 * 
	 * @param i
	 *            行
	 * @param j
	 *            列
	 * @param steps
	 *            步数
	 * @param sum
	 *            总数
	 */
	static void dfs(int i, int j, int steps, int sum) {
		
		if (i < 0 || i == n || j < 0 || j == m || vis[i][j] == 1) { // 判断是否越界
			return;
		}
		if (sum == total / 2) { // 加起来的总数 等于 全格子的一半就是成功
			ans = Math.min(ans, steps);// 要最小的步数
			return;
		}
		if (sum > total / 2) { // 如果走的总数大于全格子总数的一半就返回
			return;
		}

		// 以上三个判断相当于剪枝
		vis[i][j] = 1; // 用1来标记走过

		dfs(i - 1, j, steps + 1, sum + g[i][j]); // 上
		dfs(i + 1, j, steps + 1, sum + g[i][j]); // 下
		dfs(i, j - 1, steps + 1, sum + g[i][j]); // 左
		dfs(i, j + 1, steps + 1, sum + g[i][j]); // 右
		
		vis[i][j] = 0; // 回溯

	}

	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);
		// 程序先读入两个整数 m n 用空格分割 (m,n<10)
		// 表示表格的宽度和高度
		m = sc.nextInt();
		n = sc.nextInt();
		
		g = new int[n][m]; //初化两个数组
		vis = new int[n][m];
		
		for (int i = 0; i < n; i++) {
			for (int j = 0; j < m; j++) {
				g[i][j] = sc.nextInt();
				total += g[i][j]; // 全部的数加起来
			}
		}

		// 以上完成输入
		dfs(0, 0, 0, 0);// 从0开始
		System.out.println(ans);
	}

}

10、大臣的旅费

很久以前,T王国空前繁荣。为了更好地管理国家,王国修建了大量的快速路,用于连接首都和王国内的各大城市。

为节省经费,T国的大臣们经过思考,制定了一套优秀的修建方案,使得任何一个大城市都能从首都直接或者通过其他大城市间接到达。同时,如果不重复经过大城市,从首都到达每个大城市的方案都是唯一的。

J是T国重要大臣,他巡查于各大城市之间,体察民情。所以,从一个城市马不停蹄地到另一个城市成了J最常做的事情。他有一个钱袋,用于存放往来城市间的路费。

聪明的J发现,如果不在某个城市停下来修整,在连续行进过程中,他所花的路费与他已走过的距离有关,在走第x千米到第x+1千米这一千米中(x是整数),他花费的路费是x+10这么多。也就是说走1千米花费11,走2千米要花费23。

J大臣想知道:他从某一个城市出发,中间不休息,到达另一个城市,所有可能花费的路费中最多是多少呢?


输入格式:
输入的第一行包含一个整数n,表示包括首都在内的T王国的城市数
城市从1开始依次编号,1号城市为首都。
接下来n-1行,描述T国的高速路(T国的高速路一定是n-1条)
每行三个整数Pi, Qi, Di,表示城市Pi和城市Qi之间有一条高速路,长度为Di千米。

输出格式:
输出一个整数,表示大臣J最多花费的路费是多少。

样例输入:
5
1 2 2
1 3 1
2 4 5
2 5 4

样例输出:
135

样例说明:
大臣J从城市4到城市5要花费135的路费。

根据资源限制尽可能考虑支持更大的数据规模。

资源约定:
峰值内存消耗(含虚拟机) < 64M
CPU消耗  < 5000ms

请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。

所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意:不要使用package语句。不要使用jdk1.6及以上版本的特性。
注意:主类的名字必须是:Main,否则按无效代码处理。
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;

public class _10大臣的旅费 {

	/**
	 * @param args
	 */
	private static int n;
	private static List<Node>[] g; // 图的邻接表
	private static long max = -1;
	private static int pnt = -1;

	public static void main(String[] args) {

		Scanner sc = new Scanner(System.in);
		n = sc.nextInt(); // 行数
		g = new List[n + 1];
		for (int i = 1; i <= n; i++) { // 初始化
			g[i] = new ArrayList<Node>();
		}
		for (int i = 0; i < n - 1; i++) {
			int a = sc.nextInt();
			int b = sc.nextInt();
			long c = sc.nextLong(); //路的长度
			g[a].add(new Node(b, c));
			g[b].add(new Node(a, c));
		}
		
		//以1为根,找出一个端点
		dfs(1 , 1 ,0);
//		System.out.println(pnt); //打印找到的端点
		dfs(pnt , pnt , 0);
//		System.out.println(pnt); //打印找到的端点
		
		System.out.println(dis2money(max));

	}
	
	//dis表示距离
	static long dis2money(long dis){ //1千米花费11,走2千米要花费23。  相当于 11,12 .....加起来
		return 11 * dis + dis * (dis - 1) / 2; //等差数列公式
	}
	
	/**
	 * 
	 * @param from 来自上一个点,from是编号
	 * @param num  当前的点
	 * @param dis  历史上积累的距离
	 */
	private static void dfs(int from , int num , long dis){
		boolean isLeaf = true;
		List<Node> neighbors = g[num]; //邻居
		for(int i = 0 ; i < neighbors.size() ; i++){
			Node neighbor = neighbors.get(i);
			if(neighbor.num == from)
				continue;
			isLeaf = false;
			dfs(num , neighbor.num , dis + neighbor.dis);
		}
		if(isLeaf && dis > max){ //是叶子节点
			max = dis;
			pnt = num;
		}
	}

	static class Node {
		int num;
		long dis;

		public Node(int num, long dis) {
//			super();
			this.num = num;
			this.dis = dis;
		}

	}

}
发布了6 篇原创文章 · 获赞 0 · 访问量 50
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 深蓝海洋 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览