引入
AOV网
在日常生活中,一项大的工程可以看作是由若干个子工程(这些子工程称为“活动” )组成的集合,这些子工程(活动)之间必定存在一些先后关系,即某些子工程(活动)必须在其它一些子工程(活动)完成之后才能开始,我们可以用有向图来形象地表示这些子工程(活动)之间的先后关系,子工程(活动)为顶点,子工程(活动)之间的先后关系为有向边,这种有向图称为“顶点活动网络” ,又称“AOV网” 。
在AOV网中,有向边代表子工程(活动)的先后关系,我们把一条有向边起点的活动成为终点活动的前驱活动,同理终点的活动称为起点活动的后继活动。而只有当一个活动全部的前驱全部都完成之后,这个活动才能进行。例如在上图中,只有当工程1完成之后,工程2、3、4、5、6才能开始进行。只有当2、3、4全部完成之后,7才能开始进行。
一个AOV网必定是一个有向无环图,即不应该带有回路。否则,会出现先后关系的自相矛盾。
上图就是一个出现环产生自相矛盾的情况。4是1的前驱,想完成1,必须先完成4。3是4的前驱,而2是3的前驱,1又是2的前驱。最后造成想完成1,必须先完成1本身,这显然出现了矛盾。
拓扑排序算法
-
拓扑排序算法,只适用于AOV网(有向无环图)。
把AOV网中的所有活动排成一个序列, 使得每个活动的所有前驱活动都排在该活动的前面,这个过程称为“拓扑排序”,所得到的活动序列称为“拓扑序列”。
一个AOV网的拓扑序列是不唯一的,例如下面的这张图,它的拓扑序列可以是:ABCDE,也可以是ACBDE,或是ADBCE。在下图所示的AOV网中,工程B和工程C显然可以同时进行,先后无所谓;但工程E却要等工程B、C、D都完成以后才能进行。
构造拓扑序列可以帮助我们合理安排一个工程的进度,由AOV网构造拓扑序列具有很高的实际应用价值。
构造拓扑序列的拓扑排序算法思想:
- 选择一个入度为0的顶点并输出
- 然后从AOV网中删除此顶点及以此顶点为起点的所有关联边;
- 重复上述两步,直到不存在入度为0的顶点为止。
- 若输出的顶点数小于AOV网中的顶点数,则输出“有回路信息”,否则输出的顶点序列就是一种拓扑序列
从第四步可以看出,拓扑排序可以用来判断一个有向图是否有环。只有有向无环图才存在拓扑序列。
算法实现:
a) 数据结构:indgr[i]: 顶点i的入度;
stack[ ]: 栈
b) 初始化:top=0 (栈顶指针置零)
c) 将初始状态所有入度为0的顶点压栈
d) I=0 (计数器)
e) while 栈非空(top>0)
i. 栈顶的顶点v出栈;top-1; 输出v;i++;
ii. for v的每一个后继顶点u
1. indgr[u]–; u的入度减1
2. if (u的入度变为0) 顶点u入栈
f) 算法结束
这个程序采用栈来找出入度为0的点,栈里的顶点,都是入度为0的点。
我们结合上图详细讲解:
例题:对下面有向图进行拓扑排序,
【参考代码】
#include<iostream>
#include<queue>
#include<stack>
using namespace std;
const int MAX = 35;
int n,m;//n:顶点个数;m:边的数量
int vex[MAX]; //vex[i]:记录以顶点i的为起点的边的编号
int line[MAX];//记录拓扑排序结果
int indegree[MAX];//indegree[i]:记录顶点i的入度
struct nodeEdge{ // 边类型
int to;//指向顶点u
int next;//指向上一条边的位置
};
nodeEdge arrPath[MAX*MAX];
//构建边
void creat_graph(int v1,int v2,int curPos){
arrPath[curPos].to = v2;
arrPath[curPos].next = vex[v1];
vex[v1] = curPos;
}
//输出顶点个数为n的拓扑序列
void topSort(int n){
int cnt = 0;
stack<int> stk;
for(int i=1;i<=n;i++){
if( indegree[i] == 0){
stk.push(i);
}
}
while( !stk.empty() ){
int v = stk.top();
stk.pop();
//访问与顶点v相连的点u,将顶点u的入度减一
int index = vex[v];
while(index!=-1){
int to = arrPath[index].to;
if( --indegree[to] == 0){
stk.push(to);
}
index = arrPath[index].next;
}
line[cnt] = v;
cnt++;
}
if( cnt != n){
cout<<"has circle."<<endl;
}
else {
for(int i=0;i<cnt;i++){
cout<<line[i]<<' ';
}
}
}
int main(){
cin>>n>>m;
for(int i=1;i<=n;i++){
vex[i] = -1;
}
for(int i=1;i<=m;i++){
int v1,v2;
cin>>v1>>v2;
creat_graph(v1,v2,i);
indegree[v2]++;
}
topSort(n);
return 0;
}