提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
代码随想录算法训练营十六天|● 104.二叉树的最大深度 ● 111.二叉树的最小深度● 222.完全二叉树的节点个数
104.二叉树的最大深度
代码如下(示例):
递归法:
class solution {
public:
int maxdepth(treenode* root) {
if (node == NULL) return 0;
int leftdepth = getdepth(node->left); // 左
int rightdepth = getdepth(node->right); // 右
int depth = 1 + max(leftdepth, rightdepth); // 中
return depth;
}
};
前序遍历:
class Solution {
public:
int result;
void getdepth(TreeNode* node, int depth) {
if(node == nullptr ) return;
depth++;
result = depth > result ? depth : result; // 中
getdepth(node->left, depth);
getdepth(node->right, depth);
}
int maxDepth(TreeNode* root) {
result = 0;
getdepth(root, 0);
return result;
}
};
自己写的,用result保存最终结果,不用回溯;
回溯法:
class solution {
public:
int result;
void getdepth(treenode* node, int depth) {
result = depth > result ? depth : result; // 中
if (node->left == NULL && node->right == NULL) return ;
if (node->left) { // 左
depth++; // 深度+1
getdepth(node->left, depth);
depth--; // 回溯,深度-1
}
if (node->right) { // 右
depth++; // 深度+1
getdepth(node->right, depth);
depth--; // 回溯,深度-1
}
return ;
}
int maxdepth(treenode* root) {
result = 0;
if (root == NULL) return result;
getdepth(root, 1);
return result;
}
};
111.二叉树的最小深度
代码如下(示例):
递归法:
class Solution {
public:
int minDepth(TreeNode* root) {
if (root == NULL) return 0;
if (root->left == NULL && root->right != NULL) {
return 1 + minDepth(root->right);
}
if (root->left != NULL && root->right == NULL) {
return 1 + minDepth(root->left);
}
return 1 + min(minDepth(root->left), minDepth(root->right));
}
};
222.完全二叉树的节点个数
要求时间复杂度小于n
class Solution {
public:
int countNodes(TreeNode* root) {
if (root == nullptr) return 0;
TreeNode* left = root->left;
TreeNode* right = root->right;
int leftDepth = 0, rightDepth = 0; // 这里初始为0是有目的的,为了下面求指数方便
while (left) { // 求左子树深度
left = left->left;
leftDepth++;
}
while (right) { // 求右子树深度
right = right->right;
rightDepth++;
}
if (leftDepth == rightDepth) {
return (2 << leftDepth) - 1; // 注意(2<<1) 相当于2^2,所以leftDepth初始为0
}
return countNodes(root->left) + countNodes(root->right) + 1;
}
};
时间复杂度:O(log n × log n)
空间复杂度:O(log n)
这个时间复杂度为什么是logN我还没有想清楚。。。
现在搞明白了,只有logN-1~logN个节点是需要计数的。图中的子树中的满二叉树直接根据公式计算得出。